ABBYY

ABBYY Mobile OCR Engine 4

USER’S GUIDE

ABBYY Mobile OCR Engine 4: Table of Contents

Table of Contents

Introducing ABBYY Mobile OCR Engine 4........cccormuimemmmimmsmmsnsssssssessssssssssssnsnns 3

LT e (=T o R 1o T 6
How to Use the ABBYY Mobile OCR Engine Native LiDrarycc.ceoviieeuiiiieeenns e e eeeeen e 6
RECOgNIZING BUSINESS CaArQS iiierreieeiiineeeeeeris e eerae e e e res s eeeeens s e e s era s e eeess e e e ensa s eeseenaseanennsaeeees 9
WOrking With LanQUagESceeeeruiiieeiiie e eeeet e e e e e e e e e e s e e e e s e e eee e s e err s e e e e e e e e nenaeeaeennnns 9
WOrking With DiCHIONAIIES. ... eieeereieeeeiiie e eeeie et r e e e e e s e e e e e eean e e e er e s e e e nrn s e e rernn s eennnnns 10
Recognizing with CUStOM LanQUAGESoeveeruiiiiiiiie e eeiee e e eeres e e e e e e s e e e e e e s e e e raa s e e e ernaeaaees 11
Working With RegUIar EXPIrESSIONS.......uuiviieruieiieirieeeeeeas e eeerra s e e s rer s s e seena s e es s s e eeennseaenerasaennnnns 11
Recognizing in MICR MOGEiiiieuiieeeiie e ee et e et e e e e e e e e e e e s e e e e e eean e e e eesn s eeerrneeanennaennes 13
Description of the ABBYY Mobile OCR Engine Native Sampleoovvvreiiiiiiiiiniieein e eerin e 13
Description Of the DEMO TOOcvvuuiiiieiiieieeeiiee e e r e e s e s e e err s s s e rrn e e e errnneeees 14

Recognition SELtiNGS DialOG BOXcueuuueeeieeiueseieeeeeeieiiaaeeaettesssartssasseanasssansssanssnnsssnnsenes 15
TipS fOr TAKiNG PROTOS ..vvuuiiieiie e et r e s e e e e e e e s s s e e e e e e e e e e e e enn e e eeernnnnas 17

Native Library API Reference.......c.ccurrmurmsreinssmsresmssmsssssesssssssssssssssassassssassasnns 20
Types in ABBYY Mobile OCR Engine Native LiDrarycccuevviriniiiiniiiiini s e s s 20
Standard Return Codes of ABBYY Mobile OCR Engine FUNCLIONScovvvviiiiiiiiiiinieiiin e eeieens 21
List of the ABBYY Mobile OCR ENGIiNe FUNCLIONSuiiviiriiiiiieiiie e ee e e s eerin s s eer e s s enn s e e s e eeees 21

FINEANOCMEMIOIY FUNCEION ...c.vvessseesiee ettt ettt ettt tts et st ts et a ettt et s e s taastsastaastsssssasnsasnannas 22
FineAnalyze TextASBUSINESSCAIT FUNCEIONcuuiieseisssisssississiassssssissssssssssssssssssssassssssisssas 23
FineAreGKLanguagesSUPPOITEG FUNCEIONcuuuiieseisssisssississsisssastssssssssssssssssssassanssassiansns 23
FINEDEINIGNZE FUNCEION ...cvvsivsssirsisissesaissasssasesssssssssssssassssssansassssssssssssssssssnsssssnssssnnssssnns 23
FineEXecutionLOGFUNCEION FUNCEIONcuuveeseisisssssisissssssssssssassssssssssssssssssssssssssssssssssssnnns 24
FINEEXIACEBAICOAES FUNCIION ..vvvvsisiisesisssssissssssssasssssssssssnsssssssassnsssssssssssnssmssossnssssmnssssnnnns 24
FINEFIEEMEMIONY FUINCEION.svsssssssssisseissesatetesttaetsaattsataatsatssastaataassaassaassaasssssssssnnssnsssas 25
FINeGetLastErrOrMESSAGE FUNCEIONcuuvuissesssisiissnsnnns 25
FINEGELLICENSEINTO FUNCLIONvsvvsssisssisssisissssssssassisssssassnsssssssassnssssssssssssssnssssnsssssnsnssnnsnns 26
FINEGELTEXLLINES FUNCEIONvvvsssisssssssssesssssssssssssssssssssssssssnsssssssassnsssmssissmsssssnssmsmssissnssisennss 26
FINEGELVEISIONINIO FUNCLION ..c..vosevesssiesesisesisissesestssestasasssasanssssssassnsssssnsssnsssssnssssnsssssnsnssnnsnns 27
FINEGELWOIrdSUGGESE FUNCEION ..ccv.eveiessssssssseaestses et aesetsattattastsastaastaastasaasstassasssasssnssssssnsas 27
FINEINANZE FUNCLION c.vvvvvsvsisisssisssssssasasssssstasesssasansssssssssnssassnsssnssssnsssssnssssnssssnsnssnnsssnsnns 28
FINeLoadlImageFrOMFIE FUNCEHIONc.cuuuieusisssisssisssessesstastsssssssssssssssssssssssssasssssssssisssnsssns 28
FineLoadlImageFromINpPUESLIEaM FUNCEIONc.ccuueeueiusiisssiiiissiisttastssssissssssssssssasssssssssiansns 29
FInePrebuildWordSINTO FUNCEIONveiessisssisissssssssssssssssssssssssssnssssssssssssssssssssssisensssssnnas 30
FINEPreproCeSSIMAGE FUNCHION.eeeeisisssssesssssstsssssssassnsssssennes 30
FINERECOGNIZEBAICOTE FUMNCLIONcvveeeseessaseaeaateeteeteettaeteaettssttsatsastaassassaasssasssssanssnaesns 31
FIineRecognizeBUSINESSCAIT FUNCEIONccuusiesiesiisseissasseestsasttastssstsssssssssassssssassssssssssnsssns 32
FINERECOGNIZEIMAGE FUNCEION.cuuuviasiiiiasisirssisiasisssssscssssssssisassssssssassssssssssssssssssssssssnsisenssins 34
FINERECOGNIZEREGION FUNCEION ...cvveesessssetseseeaeattstetsattass s et astastsssssssssassssssnssassasssnsansnnsns 35
FINESELLICENSEINTO FUNCEION ...vsvvsssisssssssssesssssssssssssssssssssssssssnsssssnssssnssssssassnsssssnsssssnsssnssnns 36
FineSetRecognizerThreadSCOUNL FUNCEIONouueueiuusiissiissesiessssssssessssssssssssssassssssasssnssas 37
COIIDACK FUMCEIONS ... vvsssisssssssassssssssssassssasssasssssssssssssassnsssnssssnsssanssassnssssnnsnssnsssnssisensnns 37
THINEPrebuiltDataCallDaCKFUNCEIONccuusisssisssisisssssssssssssssssssssssssssssnssssssissnsnsssnsssnsnns 37
TFIiNEProgreSSCAlIDACKIUNCEIONoe ettt e e e e e e 38

ABBYY Mobile OCR Engine 4: Table of Contents

Custom Memory Management FUNCEIONSccccuuuiieuiicinisiiiiiiniscisiisississsssissnssssssssssissnsnas 39
TFineAllocMemoryFUNCEON FUNCEIONeeeeeeeee et ee e eeaes e aeaneaeeennnnsanees 39
TFIneFreeMemoryFUNCEION FUNCHION.c.iieuiiiisisiiiiis s caiisaaseseaasis s s aasas s aanssassssennas 39
N0 1 T =P 40
CFINEANGIE SLIUCTUIE ...ttt ettt e e e e e nssas e e e rasansesnaneees 40
CFINEBAICOAE SEIUCEUIE......cvusisssssssssissesissesasse sttt settsasttsasstasastastsssssstssssssassssssnsnsanssasnsans 41
O 1= 0 g =)o) 1 (o 1 = 41
CHINEBUSINESSCAIT SEIUCKUIC. ...ovusvsssissssssssesasitesss et sesssssttsasstssastasssssssstsssssasasssssnsssasssnsensns 42
CHINEBUSINESSCAIT SEIUCKUIC. ...cvusssssissssissesieiessetaetta sttt et ttesastassstsassssssasassssssssssssssnansns 42
CFINEIMAGE SEIUCKUIE ... cvsiiissiiseaisesaata et tsss s s asas e asssaass s s s s asss s assassnsssnsnsan s ennnns 42
CFINEIMAGEFIIE SETUCKEUIEcceeeeeeeeeeeee et et tes e et teaa e e et ssessessassannssssssenssnasnsnnsssannes 43
GetlLength Method of CAINEIMAagefile SErUCEUIEc.ueeeeeereeeeieeiesaeeieeeeeetieseeeeassassannananns 43
Read Method of CFINEIMAGEFIIE SIUCEUIEueeeeeeseeeeieeieee et eeeeiesaeansaassennassanassanneens 44
Seek Method of CFINEIMAGEFile StIUCEUIEcoveveeeeeieeieeeeeeaeeeeeeeteee e eeeeaeearasasa e sesneanenns 44
CFIneImagelnpUESErEaIm StIUCKUIC.cuuuiiriiiiises i et attis et s atsisasssaaas s aasssasnasennsssennas 45
Read Method of CFinelmagelnputStream StUCLUIEc.ccueieeuesieiiississssisasssisssssissssisasssnns 45
Skip Method of CFIineImagelnputStream SUUCIUICcuuuvieeresieisssisisisissssisasssissssssssssisasssnns 45
CFineImageTransformationInie StUCEUIEc..cuuvieesesisiisssssissisasssisastsssssssasssisssssssssissesnns 46
CFINELAYOUL SEIUCKUICovvsseesssesssesesesases ettt ettt ettt e st asttastaastaa st s sas s ssasssasssasssanssnnssanssnsannsas 46
CFINELICENSEINIO SEIUCEUIE c...ovvveseesesesissaeses et aaes s e tta ettt e s tsas e s tsa st st sasasssaassssasssssnsnsnnnses 47
CFINEPrebUiltLayOULTIIO SETUCEUIEoueeesisssissseseesiesssststsssttsssstssssssssssssssssssssssssssssansnas 47
CFINePrebUilt TEXTBIOCKINTO SUIUCEUICcvvveisesesisesseeseseetse ettt aattsattisasttesastssstassssnsssssasansnas 48
CFinePrebUiltTEXTLINEINIO SUIUCEUIE.........cvvveeesissisesseissiseissttssesitsssssassssissssssssssnsssssssssssssnnses 48
CFINERECES SEIUCEUIC. ..cvvsivssiiisasissssissasasisaastassssssassasssssssssssssssssnssssssssssnsssssnssssnsnsssnissnsnns 48
CHINETEXIBIOCK SEIUCEUI.ovesseeseseeeeseets ettt e atasessssssssasssssas s sassnsssssnssssnnsssnssssnnsasssans 49
CHINETEXICNAIACTES SUIUCEUIE .cvvevvvsivsssiisessieas et s astsssssasessasssssassnssssnsssssssnssssnsssssnssssnnns 49
CFINETEXELING SUIUCKUIE c..ovvvsisessissssiesesessss s assasssssassssssssssssssssssassnsssssnssssnssssnssssnssnsssnns 50
CFineWarningDataWrongLanguages SEUCLUIEcuueeueisseirsiissississsissssssssssssssssssssssssanssssns 50
CHINEWOIAINIO SETUCEUIE....cv.evesseessisesasessesessasttasasssasasssssssssnssssssssnsssssnssssnssssnsnssnnsnsssnns 51
CFINEWOrdSUGGESEION SUIUCEUIEcvvisseisssiesiseteeesiseteetts ettt ettt assasttastsassaassassassssssssssnsssnnnsns 51
CHINEWOIrAVEHANE SUIUCEUIC. ...cvvvsvsssisssisissesssssasssissassasssssssssssssssssssnsssnsssssnssssssssssnsssssnsssnnns 52
10 L= =T) PP 52
Ll L - Lo g X 53
THINECNAIACEEIALUTDULES ..o esessieseseseas it et s sttt astsasestsastsasanssssssassnssssanssssnnssssnssssnnsnsssnns 53
Lz o= (o L B o =T 54
THINEBAICOGEONENIALION ..o vvssssssssssssssssssssisssssssssssssssssssssssssssssnssssssssnsssssnssssnsssensnssnnssssnns 55
TFINEBAICOAESUDDIEIIENEc.c.osessseseeeseteeetee ettt sttt ettt e st e st ettt astasaastaassaasssasassssassssanssssas 55
LU= 2 Tae e L= B o = 56
THINECAAIACEEIALUTDULES ... esesssesesesees et et tta sttt estsasastsasssasanssss s sassnssssanssssnssssensnssnnsnsssnns 57
THINEIMAGEFIESEEKPOSITION.evsssssissssssssissssssssssssssssssssssssssssnsssssnsssssssssnssssnsssssnsssssnssssnnns 58
THINEIMAgeLoaAdiNGODIONSFIAGScvuusirssisirssssssisesssssssssssssssssssssnsssssnsssssssssssissmsnsssnssssnsnns 58
TFineImageProCeSSINGODLIONSFIAGScuuuuee ettt e e e e e e aeaaeeennnaaaees 58
TFINEPIEDUIMDAIATYIDE .. e eeesseeeeetee ettt ettt et ettt ettt ettt ettt e st e e taastta st asta e saasaasssassaansaansassannsan 60
TFIineRECOGNItIONCONTIGENCELEVE..........cceeeeeeeeeeeee ettt e e en e 61
TFINERECOGINIONMOME ...c.c.eeveseeeseeeseeeeeeee ettt ettt ettt ettt e st e s taa s tta st e stsasaataassaasssansaansassansas 61
TFINEROIGUONTYDE. e eseeeeeesesettettet et ettt et tastastasts st asaasass s ssasaasassassanssassnssanssnsssnnssnnnnnnns 62
THINESUDDOIEACOTEDAGE.oesvvssssssissnssssssssnssssmsssssnssssennns 62

ABBYY Mobile OCR Engine 4: Table of Contents

TFINECAGIACEIALLIIDULESc.ceeeeeeeeeeee ettt et e e e e e ssas s e e nnsansenennaeees 63
TFINETEXtCAGIECEEIQUANLYceeeeeeeeeeeeee ettt ettt e aeae e e nnssasneennnsane e 64

VL (1= L o O o = 64
TEINEWWOIAALTIDULES ...ttt ettt e et e e e e nssesseenesanseananaees 65

VL (= e T T 2 =T 65
=g e [0 = N 65

T o= 1 1 1 ¥ 68
Copyright and Trademark NOTICESiiiieruiiiiiiiie e e e e e e e e e e e e e e e eeenas 68

R 5 T ot} o= 1 o Lo 1 1 70
Recognition Languages in ABBYY Mobile OCR ENGINEccuuiiirimeiusiieeiriaeeeeeeeeeenn e eeeeens e seennnees 70
Supported IMage FOIMAES.......ivcereiiiieiie et e e e e e e e e e e e er e e e s rer s e e e erneeareeneaeenes 72

ST oo [Yo RPN 72
SYStEM REGUIFEIMENTS ... cvuiieiiiiii et r s e e s e e s e et s e e s e ra s e eaa s e ean s sennsannnnsans 74
Backward Compatibility Issues of ABBYY Mobile OCR ENgINE.......ccovvevieiiiiiiiiiieieeiie e eee e 74
Compatibility of ABBYY Mobile OCR Engine 4 release 14 with previous releasesccc...... 74
Compatibility of ABBYY Mobile OCR Engine with version 3.0 and older...............cccoecuvuvvivevnnnnn. 78

ABBYY Mobile OCR Engine DistribUtion Kit..........ocuuiiiiuniiiiiiii e rr e s rn e 81
What's New in ABBYY Mobile OCR Engine 4 release 15......c.ccoiiveiiimiiiiiiniiiii e sere e s 83
000 1 1 - Lot Y-] - () e . I
How to Buy ABBYY Mobile OCR ENGINE 4ceuiiiiiiiiiii ittt s s e e s s s e s ea s eaneen 84
BI=Te a1 g Lotz IS0 o o o OO PPTPPPRE 84

ABBYY Mobile OCR Engine 4: Table of Contents

ABBYY Mobile OCR Engine 4: Introducing ABBYY Mobile OCR Engine 4

Introducing ABBYY Mobile OCR Engine 4

Use ABBYY Mobile OCR Engine 4 to develop fast, light and compact OCR applications for mobile devices. Based on
ABBYY's world-famous cutting-edge OCR technologies, ABBYY Mobile OCR Engine 4 provides powerful algorithms for
image processing and high-accuracy recognition and is optimized to provide high efficiency combined with low
requirements for device resources:

e Upgraded memory management: optimal balance of speed and quality

e Compact code: it occupies from 8 MB of ROM and from 10 MB of RAM

e OCR technologies famous worldwide

e 62 recognition languages including Chinese, Japanese, and Korean

e Reliable development tool

ABBYY Mobile OCR Engine 4 is the ideal solution for developers of mobile and “light” applications that strive to
increase the attractiveness of their products, upgrade and expand their functionality and application areas. ABBYY
Mobile OCR Engine 4 is a leader among the technological products for developing applications for mobile devices.

Key features
e High quality and accuracy of recognition

e Recognition of multilingual documents
e Business card reading
e Barcode recognition

e Integration with popular mobile platforms

Low resource requirements

This distribution provides you a possibility to test these features of ABBYY Mobile OCR Engine 4 using a special Demo
Tool utility (TestShell.exe) and ABBYY Mobile OCR Engine 4 native library.

How to use this Help

In this Developer's Help you can find all the necessary information about testing ABBYY Mobile OCR Engine 4.
Guided Tour
See this section for quick-start instructions and articles about using different aspects of ABBYY Mobile OCR Engine.

Description of the Demo Tool

Here you can find detailed information about the Demo Tool utility (TestShell.exe) which demonstrates the work of
the functions.

Native Library API Reference

This section contains the complete description of ABBYY Mobile OCR Engine native library API.
Licensing

The information about ABBYY Mobile OCR Engine license protection.

Specifications

The list of supported image formats, recognition languages, compatibility information, etc.

Contact ABBYY
Here you can find the contact information of the ABBYY offices and technical support service.

ABBYY Mobile OCR Engine 4: Guided Tour

Guided Tour

This section contains information which will help you to start working with ABBYY Mobile OCR Engine and describes
various special techniques:
e How to Use the Native Library

e Recognizing Business Cards
¢ Working with Languages
e Working with Dictionaries
e Recognizing with Custom Languages
e Working with Regular Expressions
e Recognizing in MICR Mode
e Description of the Native Sample
e Description of the Demo Tool
e Recognition Settings Dialog Box

e Tips for Taking Photos

How to Use the ABBYY Mobile OCR Engine Native Library

The ABBYY Mobile OCR Engine native library may be used for testing. The ABBYY Mobile OCR Engine library supplied
as DLL and static library and as a wrapper of the library for Android and iOS may be found in the appropriate
distributions.

This section contains description of how to work with DLL and static library.

Go to the Native Library API Reference section for detailed description of the ABBYY Mobile OCR Engine native library
functions and structures.

Loading the library

You start your work with ABBYY Mobile OCR Engine by loading the library with help of the Finelnitialize function. It
allows you to specify memory allocation/de-allocation functions and a logging function. Then you need to specify the
license information (see the Licensing section for details).

Note: If you use a trial license, the word "ABBYY" will appear in every 20th line in the recognized text and in every

third recognized business card.
1. [optional] Implement custom memory management functions and a logging function if you wish to
use them.

2. Call the Finelnitialize function, passing these functions as input parameters. If you do not wish
to use custom functions, pass 0 for the corresponding parameters.

3. Load the license file into memory.

4. Create a CFineLicenselInfo structure. Assign the pointer to the loaded license data to the
LicenseData field and the size of loaded data to the DataLength field. Assign the name of your
application to the ApplicationID field. It must correspond to the name of the application that is
specified in the license file.

5. Call the FineSetLicenseInfo function, passing to it the constant pointer to the
CFineLicenselInfo structure you just configured.

ABBYY Mobile OCR Engine 4: Guided Tour

6. After specifying the license you can work with the library until the FineDeinitialize function is
called.

Sample code of library initialization
// Error handling is omitted

// Custom memory allocation function
static void* allocFunction(int size)
{

void* res = malloc(size);

return res;
}
// Custom memory release function
static void freeFunction (void* ptr)
{

free(ptr);

// Initialize the library with custom memory management functions and without logging

const TFineErrorCode initializeLibError = FineInitialize(allocFunction, freeFunction,
0);

void* loadedLicenseData = 0;
int licenseDataSize = 0;
wchar* appID; // set to your application ID

// Load the license file into memory at the loadedLicenseData address

CFinelLicenseInfo licenselInfo;
licenseInfo.lLicenseData = static cast<BYTE*>(loadedLicenseData);
licenseInfo.Datalength = licenseDataSize;

licenseInfo.ApplicationId = applD;
const TFineErrorCode errorCode = FineSetLicenselInfo(&licenselInfo);

// Work with the library until the FineDeinitialize call

Important! All functions of the ABBYY Mobile OCR Engine library should only be called from the thread in which the
library was initialized. You cannot initialize the library in several threads simultaneously without deinitialization.

Opening and processing the images
Below is a description of a typical procedure performed by ABBYY Mobile OCR Engine:

1. Load the image for recognition. You can open the image file with the help of the
FineLoadImageFromFile function or load it from the input stream using the
FineLoadImageFromInputStream function. These functions convert the image in JPEG or PNG
format into CFineImage internal format of ABBYY Mobile OCR Engine. If you need to load an
image in any other format, you must load it into memory and convert it into CFineImage format
on your side. The functions which perform recognition work with the image in this format.

2. Recognize the image. We will use the FineRecognizeImage function as an example. Configure
the parameters in the following way:

e Janguages: Recognition languages, passed as an array of the TLanguagelID constants. We
do not recommend setting more than two recognition languages at once.

e patterns. You need to load the pattern file which includes the description of the languages
you need into memory and pass its address as TFinePatternsPtr.
To find out which predefined pattern file you need for your languages, consult the

ABBYY Mobile OCR Engine 4: Guided Tour

PatternsFilesInfo.txt file which you will find in the data/Patterns folder of the
distribution package.

e (cjkPatterns: If you need to recognize CIJK languages, load the pattern files for those
languages into memory in the same way and create a zero-terminated array of
TFinePatternsPtr variables with the addresses of loaded patterns. Otherwise, pass an
array which contains only one zero pointer.

e dictionaries: Load the dictionary files for the languages you use. Attaching the dictionary
will improve recognition quality. See Recognition Languages in ABBYY Mobile OCR Engine
for information on which languages have built-in dictionary support. Create a zero-
terminated array of TFineDictionaryPtr variables with the addresses of loaded
dictionaries. If you do not use dictionaries, pass an array which contains only one zero
pointer (do not pass zero instead of array).

e jmage: Pass the CFineImage structure you obtained in the first step.

e imageProcessingOptions: Select the image processing options and pass the OR
combination of appropriate TFineImageProcessingOptionsFlags constants. For default
option, pass 0.

e recMode: Choose the recognition mode and specify the appropriate
TFineRecognitionMode constant.

e confidencelLevel: Choose the level of marking characters as uncertain
(TFineRecognitionConfidenceLevel).

e JayoutBuff. The result of processing. Create a CFineLayout* pointer variable which will
receive the recognition results.

e rotation: Create a TFineRotationType variable which will receive the information about
image rotation. You can pass 0 as this parameter if you do not use the recognized text
coordinates.

e progressCallback: Implement the TFineProgressCallbackFunction function if you need
to receive information about the operation progress or be able to cancel the operation. You
can pass zero pointer if you do not use this callback.

e prebuiltDataCallback: Implement the TFinePrebuiltDataCallbackFunction function if
you need to receive information about the image rotation and detected text blocks before
the processing is completed, for example, to display the text blocks while the recognition
is going on. You can pass zero pointer if you do not use this callback.

3. The CFineLayout structure you receive after the operation is completed contains all recognized
text and its coordinates. Iterate through the blocks, the text lines within them, and the characters
within text lines; save the text in the format you need, search it for keywords or work with it in
any other way.

Note: By default, recognition operations will be performed in parallel, using up to 4 threads. You can change this
limitation by calling the FineSetRecognizerThreadsCount after library initialization. Pass 1 for the threadsCount
parameter to turn off multi-threading, or increase the number of threads if you need faster processing. However, the
number of threads working simultaneously can never exceed the number of CPU cores the device provides.

See also
Description of the Native Sample

ABBYY Mobile OCR Engine 4: Guided Tour

Recognizing Business Cards

Business cards contain business information about a company or a person. Business cards can include person name,
company, telephone numbers, fax, e-mail, website addresses and similar information. You may need to capture this
information from paper business cards and save it in digital form. It can be the address book of a mobile phone, e-
mail client, or any other data storage system.

In ABBYY Mobile OCR Engine a business card is represented by a set of fields, which can be of different types such as
name, phone number, e-mail address. Fields of some types can also contain several components, e.g. name field can
contain "first name", "middle name", and "last name" components. To extract the information you need, you can
implement a procedure iterating through fields and performing different actions depending on the field type.

General recommendations

Business card recognition quality will be significantly improved if you add the English language to the list of
recognition languages and use the English.akw keywords dictionary, even if the business cards you recognize are not
in English.

Not all languages are provided with the keywords dictionaries necessary for business card recognition. See
Recognition Languages in ABBYY Mobile OCR Engine for a full list.

Native library

The ABBYY Mobile OCR Engine native library provides the FineRecognizeBusinessCard function for recognizing an

image as a business card. Follow these steps:
1. Load the image for recognition using the FineLoadImageFromFile or
FineLoadImageFromInputStream functions. See How to Use the Native Library for details.

2. The parameters of the FineRecognizeBusinessCard function are the same as for the
FineRecognizeImage function (described in How to Use the Native Library), with the following
exceptions:

e Janguages: We recommend including the English language (LID_English) in this parameter,
even if your business cards are in some other language.

e keywords: Load the keywords dictionaries for the languages you use. Add the English.akw
dictionary, even if your business cards are not in English. Create a zero-terminated array of
TFineKeywordsPtr variables with the addresses of loaded keywords dictionaries.

e businessCardBuffer: The result is returned as CFineBusinessCard, not as CFineLayout.
Create a CFineBusinessCard* pointer variable which will receive the recognition results.

3. Work with the result of recognition. The CFineBusinessCard structure contains an array of fields
represented by CFineBcrField structure variables. Search through these fields for the information
you need.

Use the value of CFineBcrField.Type to check the type of field (represented by constants of
TBcrFieldType enumeration).

Use the value of CFineBcrField.TextLines to obtain the text of the business card field. It can
contain several lines represented by CFineTextLine structures.

If your scenario requires recognizing different kinds of documents and detecting business cards among them, you can
also use the FineAnalyzeTextAsBusinessCard function, which looks for business card fields in the text that has
already been recognized.

See also
How to Use the Native Library

Working with Languages

One of the main recognition parameters is the language which is used during recognition. It is very important for
good quality recognition results to set up the languages of a document correctly.

ABBYY Mobile OCR Engine 4: Guided Tour

Any function you use for recognition takes a set of languages as an input parameter. In general we recommend not
to add too many languages to the set. But, if you are recognizing business cards, adding the English language is
highly recommended, even if the business cards are in another language.

Predefined and custom languages

ABBYY Mobile OCR Engine includes a set of predefined recognition languages. See the list in Recognition Languages
in ABBYY Mobile OCR Engine. Some of these languages have dictionary support. Attaching a dictionary to the
recognition language will improve the results' quality, but it is not mandatory if you are using the native library. See
Working with Dictionaries for details.

You can also create a custom language which will allow only the words conforming to a specified regular expression.
This can be useful if you need to extract some specific data from the images, such as telephone numbers or e-mail
addresses, which are easily described by means of a regular expression. See Recognizing with Custom Languages and
Working with Regular Expressions.

Patterns

The description of a recognition language (i.e. its ID, set of characters, etc.) is stored in a pattern file with the
extension *.rom.

Important! A pattern file must include all languages that you are going to use for recognition.

If you use only predefined languages, you may choose one of the pattern files which are included in the distribution
pack. You can find these files in the data\Patterns folder of the ABBYY Mobile OCR Engine installation folder. This
folder contains pattern files for all languages, certain pairs, and groups. You can find the list of available pattern files
and the languages they correspond to in the PatternsFilesInfo.txt file in the same folder. If none of the pattern
files suits you, or if you are going to use custom languages, you need to create your own pattern file. To create a
custom language, please contact support.

See also
How to Use the Native Library

Working with Dictionaries

ABBYY Mobile OCR Engine allows you to attach dictionaries to a recognition language, which greatly improves
recognition quality.
Dictionaries may be of several types:
 Standard dictionary. This type of dictionary is already provided for the predefined languages that
have built-in dictionary support (see Recognition Languages in ABBYY Mobile OCR Engine). These
dictionaries are stored in dictionary files (*.edc) which are located in the data\Dictionaries folder
of the ABBYY Mobile OCR Engine installation folder.

» Keywords dictionary. This dictionary is needed for business card recognition (BCR) and is provided
for some predefined languages (see Recognition Languages in ABBYY Mobile OCR Engine). This
dictionary contains words that appear most often on business cards, for example, "Phone", "Address",
and etc. These dictionaries are stored in *.akw file located in the data\BcrData folder.

In the ABBYY Mobile OCR Engine native library, to use recognition functions (FineRecognizeImage,
FineRecognizeRegion, and FineRecognizeBusinessCard), you must set up the list of dictionaries (the
dictionaries parameter) and the list of keywords dictionaries (the keywords parameter in the
FineRecognizeBusinessCard and FineAnalyzeTextAsBusinessCard functions).

Any predefined language (e.g. English) can be used without dictionary support. This is generally done to save
memory, but the quality of recognition will deteriorate.

To use a predefined language without dictionary support, you need to pass as the dictionaries parameter an array
which contains only one pointer to zero.

However, note that you cannot use business card recognition functions without at least one keywords dictionary. We
strongly recommend adding the English keywords dictionary for recognition of business cards in any language. The
results' quality will almost always improve.

10

ABBYY Mobile OCR Engine 4: Guided Tour

See also

How to Use the ABBYY Mobile OCR Engine Library
ABBYY Mobile OCR Engine Distribution Kit

Recognizing with Custom Languages

To recognize image with a custom language, you need to create a pattern file that contains all recognition languages
that you are going to use, and you also have to know the IDs of these recognition languages and the name of the
pattern file.

If you need to create a custom language, please contact support.

Why create a custom language

Here are some examples of scenarios in which a custom language improves recognition:

e If you need to extract some specific data from the images, such as telephone numbers or e-mail
addresses, a custom language which will allow only words conforming to a specified regular
expression can be created. Limiting the alphabet to exactly the set of symbols that occur can also be
helpful. To explore the ABBYY Mobile OCR Engine regular expression alphabet see Working with
Regular Expressions.

e If you recognize texts which use unusual vocabulary, e.g. contain many technical terms, they may not
be recognized well using the inbuilt dictionary. In this case a custom language can be created which
would be a copy of English, but work with a user-defined dictionary, so that the terms are recognized
better.

Native library

If you use the FineRecognizeImage, FineRecognizeRegion, and FineRecognizeBusinessCard functions,
which work with an image, you need to set up a list of recognition languages (the /anguages parameter) and a
pattern file (the patterns parameter).

Note: The pattern file with custom language should be the first in the patterns parameter.

Each language has a unique ID (type of TLanguagelID). If you attempt to use a language without or with a wrong
pattern file, the recognition function will return the FEC_InvalidArgument error code.

See also

Working with Regular Expressions

Working with Regular Expressions
The ABBYY Mobile OCR Engine regular expression alphabet is described in the following table:

Item name | Conventional Usage examples and explanations

regular

expression

sign
Any . ¢.t— denotes words like "cat", "cot"
character
Character 0 [b-dJel/— denotes words like "bell", "cell", "dell"
from a [tyJell— denotes words "tell" and "yell".
character
range
Character out | [*] [y Jell— denotes words like "dell", "cell", "tell", but forbids "yell"
of a [7*n-sjel/l— denotes words like "bell", "cell", but forbids "nell", "oell",
Character n nn n | n " n

pell", "gell", "rell" and "sell

11

ABBYY Mobile OCR Engine 4: Guided Tour

range

Or | c(a/u)t— denotes words "cat" and "cut"

0 or more * 10*— denotes numbers 1, 10, 100, 1000 etc.

occurrences

in a row

1 or more + 10+ — allows numbers 10, 100, 1000 etc., but forbids 1.

occurrences

in a row

Letter or digit | [0-9a-zA-Z] [0-9a-ZA-Z] — allows a single character;
[0-9a-ZA-Z]+ — allows any word

Capital Latin | [A-Z]

letter

Small Latin [a-z]

letter

Capital [A-A]

Cyrillic letter

Small Cyrillic | [a-4]

letter

Digit [0-9]

Space \s

System @

character

Word from @(Dictionary) The Dictionary parameter sets the path to the user dictionary from

dictionary which words must be taken. Backslashes in the path must be
doubled. For example: @(D:||MyFolder||MyDictionary.amd).
Note: Some programming languages (such as C++) require you to
escape backslashes in string literals. In this case you will need two
escaped backslashes, which will result in a quadrupled backslash. The
example above will look like this in C++:
L"@(D:\\\\MyFolder\\\\MyDictionary.amd) "

Notes:

1. Some characters used in regular expressions are "auxiliary", i.e. they are used for system
purposes. As you can see from the list above, such characters are square brackets, periods, etc. If
you wish to enter an auxiliary character as a normal one, put a backslash (\) before it.

Example: [t-v/x+ denotes words like tx, txx, txx, etc., ux, uxx, etc., but |/t-v|/x+ denotes words
like [t-v]x, [t-v]xx, [t-v]xxx etc.

2. If you need to group certain regular expression elements, use parentheses. For example, (a/b)+/c
denotes c and any combinations like abbbaaabbb, ababab, etc. (a word of any non-zero length in
which there may be any number of a's and b's in any order), whilst a/b+/c denotes a, c, and b, bb,
bbb, etc.

Sample regular expressions
Regular expression for dates

The number denoting day may consist of one digit (e.g. 1, 2 etc.) or two digits (e.g. 02, 12), but it cannot be zero (00
or 0). The regular expression for the day should then look like this: ((/0)/1-9])/([12]/0-9])/(30)/(31).

The regular expression for the month should look like this: ((/0)/1-9])/(10)/(11)/(12).
The regular expression for the year should look like this: ((19)/0-9][0-9])/([0-9][0-9])/((20)[0-9][0-9]/([0-9][0-9])).

What is left is to combine all this together and separate the numbers by period (e.g. 1.03.1999). The period is an
auxiliary sign, so we must put a backslash (\) before it. The regular expression for the full date should then look like
this:

12

ABBYY Mobile OCR Engine 4: Guided Tour

(1O 1-9DIA12][0-9DICOIEI)N. (1O 1-9D/(10)IID/(12))\.(19)[0-9][0-9])/([0-9][0-9])I((20)[0-9][0-9] ([0-
9/[0-9))))

Regular expression for e-mail addresses

You can easily make a language for denoting e-mail addresses. The regular expression for an e-mail address should
look like this:

[a-ZA-Z0-9_|-|.]+|@[a-ZA-Z0-9|. |-]+|.[a-ZA-Z]+

See also

Recognizing with Custom Languages

Recognizing in MICR Mode

ABBYY Mobile OCR Engine supports Magnetic Ink Character Recognition (MICR) mode. A custom "MICR" language is

defined for recognition of images in MICR Mode, and it is included in the Micr.rom pattern file which can be found in
the data\Patterns folder of the distribution package. The MICR language has the "0123456789ABCD" alphabet and
language ID equal to 1024.

Important: Only the MICR E13B characters are recognized in the MICR mode, all other fonts are ignored.

Native library

To enable MICR mode in the ABBYY Mobile OCR Engine native library, call a recognition method, e.g.,
FineRecognizeImage, with the following values:
1. Janguages: an array containing one constant, the MICR recognition language ID, which is 1024. In
MICR mode you cannot add any more languages to the list.

2. patterns: the address of the Micr.rom file loaded into memory.

3. imageProcessingOptions.: FIPO_MicrMode constant. You can pass an OR combination with some
other constants, which contain the required settings as to geometry correction and other image
transformations.

See also
How to Use the Native Library

Description of the ABBYY Mobile OCR Engine Native Sample

ABBYY Mobile OCR Engine includes a code sample written in C++ which illustrates the work with the native library.
The code sample is located in the \Sample \Generic\Sources\src subfolder of the ABBYY Mobile OCR Engine
folder.

The sample loads PNG image files from the \Samples\Generic\SampleImages folder with the help of the
FineLoadImageFrompFile function and recognizes them using the FineRecognizeBusinessCard,
FineRecognizeImage, and FineRecognizeBarcode functions.

Note: If you use a trial license, the word "ABBYY" will appear in every 20th line in the recognized text and in every
third recognized business card.
See also

How to Use the Native Library
Native Library API Reference

13

ABBYY Mobile OCR Engine 4: Guided Tour

Description of the Demo Tool

ABBYY Mobile OCR Engine distribution kit includes a special Demo Tool utility (TestShell.exe) which demonstrates the
work of the functions. This utility is located in the \Tools.Windows subfolder of the ABBYY Mobile OCR Engine
folder.

The Demo Tool also performs the following functions:
e selecting input parameters of the functions (for example, the optimal memory size, which is
necessary to recognize a specific image);
e viewing the results of recognition of various images;

e saving recognition results.

Main Window

o

File View Boxes Actions Help

BusinessCard.bmp

Results

Phone: +7 (495) 783 3700

Fax: +7 (495) 783 2663

E-mail: Alexander Ch@abbyy.coi
WebAddress: www.abbyy.com
Address:

P.O. Box #54, Moscow,

129301. Russia

Name: ABBYY

Name: Alexander Churaev
CompanyName: ABBYY Headqu
JobTitle:

Projects Director

Mobife Products Department

Menu Bar

File Menu

In the File menu you can open an image (File>Open Image...)
Boxes Menu

The Boxes menu is designed for working with blocks, which have been detected during analysis or recognition. You
can renumber, delete, and/or move blocks, change block types (Text or Picture), and save the current arrangements
of blocks to a file or load it from a file.

Action Menu
The following items of the Action menu allow you to call the correspond ABBYY Mobile OCR Engine functions:
e Service functions:

e You can select the Auto-initialize item and the library will be initialized automatically or
select the Finelnitialize and FineDeinitialize functions to initialize and deinitialize the
library

e Get last error message (the FineGetLastErrorMessage function)

14

ABBYY Mobile OCR Engine 4: Guided Tour

e Get shell key license information (the FineGetLicenselInfo function)
e Get version (the FineGetVersionInfo function)

e Preprocess image (the FinePreprocessImage function)

e Preprocess words (the FinePrebuildWordsInfo function)

e Find all lines (the FineGetTextLines function)

e Find and recognize barcodes (the FineExtractBarcodes function)

e Recognize active block (the FineRecognizeRegion function)

e Recognize all blocks (the FineRecognizeRegion function)

e Recognize all blocks with words info (the FineRecognizeRegion function)

e Recognize image (the FineRecognizeImage function)

e Recognize business card (the FineRecognizeBusinessCard function)

e Generate word suggestions (the FineGetWordSuggest function)

e Recognize barcode (the FineRecognizeBarcode function)

By selecting the Save Recognition Results... item you can save the recognition results.

The Recognition settings... item opens a dialog box that allows you to set up image preprocessing and recognition
parameters and select the optimal memory size which is necessary to recognize a specific image.

The Barcode recognition setting... item opens the corresponding dialog box that allows you to specify barcode
type, orientation, and the other parameters.

See also

Recognition Settings Dialog Box

Recognition Settings Dialog Box

This dialog box allows you to set up image preprocessing and recognition parameters and select the optimal memory
size which is necessary to recognize a specific image.

15

ABBYY Mobile OCR Engine 4: Guided Tour

Recognition settings lﬁj

Language database path:

| [Full dictionaries

| Options

T e " onstieies

English - |[JchineseSimpiiied , [HasCJk
D ChineseTraditional [Find All Text
[[]Danigh [Iz European with some CJK
DDUtCh_ [Detect page orientation
[[]Estanian o _
English [Prohibitwerical CJK text
[]Finnish [MICR text type
[]French
D German = Confidence lewel:
DGreek |Leve|3 j
[[]Indonesian
I:I ltalian Recaognition maode:
D Japanese |Fu|| j
DKDrean) [Adjustimage resolution
[[JHorwegianBokmal
[[]Nonwegianhynorsk |SDD
[]Palish o
[JPoruguese Rsb limit (KE): |-1
[[]PorugueseBrazilian
[[]Russian

N "1 5panish - Cancel

Option name

Option description

Language A path to the language database (the textlang.dat file)

database path

Recognition Specifies the recognition languages. See Recognition Languages in ABBYY Mobile
languages OCR Engine.

Analysis Specifies languages which are used during image analysis.

languages

Full dictionaries

The recognition languages which have full dictionary support are marked in
Recognition Languages in ABBYY Mobile OCR Engine.

Image preprocessi

ng options group

Disable deskew

Specifies whether the skew should be corrected.

Has CIK Specifies whether the input image has Asian characters.

Find All Text Specifies whether the program should find all text on the image.

Is European with | Specifies whether the input image contains European-language and some CIK text.
some CIJK

Detect page Specifies whether the program should detect page orientation.

orientation

Prohibit vertical If this option is selected, the program will recognize only a horizontal CIK text on
CIK text image, all vertical CIK text will be ignored.

MICR text type Specifies whether the MICR E13B font must be recognized.

Confidence level

Specifies the recognition confidence level. If the level 0 is set, none of the
uncertain characters are marked. If the level 4 is set, all suspicious characters are
marked as uncertain. Level 3 is set as default.

16

ABBYY Mobile OCR Engine 4: Guided Tour

Recognition Specifies the recognition mode:
mode e Full
Full recognition mode

e Fast
This mode provides 25% faster recognition speed for European
languages
Adjust image Allows you to adjust image resolution.
resolution
RAM size
Specifies the optimal memory size, which is necessary to recognize a specific
image.
See also

Description of the Demo Tool

Tips for Taking Photos

Taking photos of documents requires some skill and practice. The characteristics of your camera and shooting
conditions are also important.

Note: For detailed information about the settings of your camera, please refer to the documentation supplied with
your camera.

Before taking a picture:
1. Make sure that the page fits entirely within the frame.

2. Make sure that lighting is evenly distributed across the page and that there are no dark areas or
shadows.

3. Straighten out the page if required and position the camera parallel to the plane of the document
so that the lens looks to the center of the text being photographed.

The topics below outline the required camera specifications and shooting modes.

Digital Camera Requirements

Minimum Requirements
e 2-megapixel sensor

e Variable focus lens

Recommended Requirements
¢ 5-megapixel sensor

e Flash disable feature

e Manual aperture control or aperture priority mode

e Manual focusing

e An anti-shake system, otherwise the use of a tripod is recommended

e Optical zoom

Shooting Modes
Lighting

17

ABBYY Mobile OCR Engine 4: Guided Tour

Make sure there is enough light (preferably daylight). In artificial lighting, use two light sources positioned so as to
avoid shadows.

Positioning the Camera

If possible, use a tripod. Position the lens parallel to the plane of the document and point it toward the center of the
text.

At full optical zoom, the distance between the camera and the document must be sufficient to fit the entire document
into the frame. Usually this distance will be 50-60 cm.

Flash

Whenever possible, turn off the flash to avoid glare and sharp shadows on the page. In poor lighting conditions, try
using the flash from a distance of about 50 cm, or, preferably, use additional lighting.

Important! Using the flash when photographing documents printed on glossy paper causes the worst glare.

White Balance

If your camera allows, use a white sheet of paper to set white balance. Otherwise, select the white balance mode
which best suits the current lighting conditions.

What do I do if...
There is not enough light

Try the following:
e Select a greater aperture value

e Select a greater ISO value for sensitivity

e Use manual focusing if the camera cannot lock the focus automatically

18

ABBYY Mobile OCR Engine 4: Guided Tour

The picture is too dark and low-contrast
Try using additional light sources. Otherwise, increase the aperture value.
The picture is not sharp enough

Auto focus may not work properly in poor lighting or when photographing at a close distance. In poor lighting
conditions, try using an additional light source. When photographing a document up close, try using the Macro (or
Close-Up) mode. Otherwise, if possible, focus the camera manually.

If only a part of the picture is blurred, try reducing the aperture value. Increase the distance between the document
and the camera and use maximum zoom. Focus on a point anywhere in between the center and a border of the
image.

In poor lighting conditions, when shooting in auto mode, the camera will use slower shutter speeds, which makes the
resulting photo less sharp. In this case, try the following:
e Enable the anti-shake system, if available.

e Use auto release to prevent the shaking of the camera caused by pressing the shutter release button
(even when using a tripod).

The flash causes glare in the center of the picture
Turn off the flash. Otherwise, try photographing from a greater distance.

19

ABBYY Mobile OCR Engine 4: Native Library API Reference

Native Library API Reference

This section contains the description of ABBYY Mobile OCR Engine native library:

e Using Types

e Return Codes

Functions

e Callback Functions

e Custom Memory Management Functions

e Enumerations

e Structures

See also
How to Use the Native Library

Types in ABBYY Mobile OCR Engine Native Library

ABBYY Mobile OCR Engine native library functions use the following types:

Type

Description

BYTE

Byte (8 bits).
typedef unsigned char BYTE;

DWORD

32-bit unsigned integer.
typedef unsigned long DWORD;

RECT

This structure defines the coordinates of the upper-left and lower-
right corners of a rectangle.
typedef struct tagRECT ({
long left;
long top;
long right;
long bottom;
} RECT, *PRECT;

TFineDictionaryPtr!

ABBYY Mobile OCR Engine dictionaries.
typedef void* TFineDictionaryPtr;

TFineImagelLoadingOptions

The image processing options.
typedef DWORD TFineImageLoadingOptions;

TFineImageProcessingOptions

The image processing options.
typedef DWORD TFineImageProcessingOptions;

TFinePatternsPtrt ABBYY Mobile OCR Engine patterns.
typedef void* TFinePatternsPtr;
TFineKeywordsPtr! ABBYY Mobile OCR Engine keywords dictionaries.
typedef void* TFineKeywordsPtr;
WCHAR Unicode character.
typedef WORD WCHAR;
WORD 16-bit unsigned integer.

typedef unsigned short WORD;

20

ABBYY Mobile OCR Engine 4: Native Library API Reference

1 — Tt is very important for ARM processors that absolute addresses corresponding to variables of these types are 4-

byte aligned.

Standard Return Codes of ABBYY Mobile OCR Engine Functions

Below is the list of the standard return codes of the ABBYY Mobile OCR Engine functions.

typedef enum tagTFineErrorCode

FEC NoError

FEC NotInitialized

FEC LicenseError

FEC InvalidArgument

FEC NotEnoughMemory

FEC InternalFailure

FEC TerminatedByCallback
FEC AlreadyInitialized

} TFineErrorCode;

Elements

o ~J o U W N B O
~

{

~

~

~

~

~

~

~

Name

Description

FEC_NoError

The function is completed successfully.

FEC_NotInitialized

The library has not been initialized.

FEC_LicenseError

Unacceptable license information is used or the functionality is not available
under the license.

FEC_InvalidArgument

One or more arguments are invalid. Use the FineGetLastErrorMessage
function for diagnostics.

FEC_NotEnoughMemory

Not enough memory to perform the operation.

FEC_InternalFailure

An unspecified internal error.

FEC_TerminatedByCallback | The operation was terminated by the user via a callback function.

FEC_AlreadylInitialized

The library has already been initialized.

List of the ABBYY Mobile OCR Engine Functions

Function

Description

FineAllocMemory

Allocates memory.

FineAnalyzeImage

Analyzes the image and finds the text blocks on it.

FineAnalyzeTextAsBusinessCard

Detects business card fields in text lines returned from the
FineRecognizeImage function.

FineAreCjkLanguagesSupported

Returns a non-zero value if the library supports the CIJK
language recognition.

FineDeinitialize

Deinitializes the ABBYY Mobile OCR Engine library.

FineExecutionLogFunction

Delivers to the client the information about execution.

FineExtractBarcodes

Finds and recognizes all barcodes on the image.

FineFreeMemory

Releases memory allocated for output buffer.

FineGetLastErrorMessage

Returns the last error message.

FineGetLicenselnfo

Returns information about the current license.

FineGetTextLines

Detects text lines on the image.

21

ABBYY Mobile OCR Engine 4: Native Library API Reference

FineGetVersionInfo Returns the version of the library.

FineGetWordSuggest Generates a list of suggestions for the selected word from the
specified dictionary.

Finelnitialize Initializes the ABBYY Mobile OCR Engine library.

FineLoadImageFromFile Loads an image from a file.

FineLoadImageFromInputStream Loads an image from the input stream.

FinePrebuildWordsInfo Returns the document layout information, including rectangles
of words, without the text recognition.

FinePreprocessImage Binarizes an image.

FineRecognizeBarcode Recognizes barcodes.

FineRecognizeBlocks Recognizes a set of blocks on the image. Layout analysis is not
performed.

FineRecognizeBusinessCard Recognizes all text lines on the image and analyzes the image
as a business card in one step.

FineRecognizeImage Recognizes all text lines on the image.

FineRecognizeRegion Recognizes all text lines in the specified region.

FineSetLicenselnfo Sets the ABBYY Mobile OCR Engine the license information.

FineSetRecognizerThreadsCount Limits the number of threads that can be used for multi-

threaded processing.

Callback Functions

TFinePrebuiltDataCallbackFunction | Delivers to the client the prebuilt information about the
document layout, text blocks and lines before the text
recognition.

TFineProgressCallbackFunction Delivers to the client the information about the approximate
percentage of analysis or recognition.

Custom Memory Management Functions

TFineAllocMemoryFunction Implemented on the client side. Custom memory allocation
function.

TFineFreeMemoryFunction Implemented on the client side. Custom memory release
function.

FineAllocMemory Function

This function allocates memory. If during library initialization you specified a custom function for memory allocation,
that function will be used.

C Syntax
TFineErrorCode FineAllocMemory (

int size,
void** ptr
) 7
Parameters
size
[in] The size of memory buffer that needs to be allocated.
ptr
[out] A pointer to allocated memory.

Return value
The function returns the standard return values of ABBYY Mobile OCR Engine functions.

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

FineFreeMemory
Finelnitialize

FineAnalyzeTextAsBusinessCard Function

This function finds business card fields in text lines returned from the FineRecognizeImage function.
C Syntax
TFineErrorCode FineAnalyzeTextAsBusinessCard (

const TFineKeywordsPtr keywords[],
const CFineLayout* layoutBuff,
CFineBusinessCard** businessCardBuffer,

TFineProgressCallbackFunction progressCallback
)
Parameters
keywords([]
[in] The zero-terminated list of keywords dictionaries as a TFineKeywordsPtr variable. For the best result of

business card recognition, add the English language keywords dictionary to the list, regardless of the language of the

business card.

layoutBuff

[in] A reference to a CFineLayout variable which is output variable of the FineRecognizeImage function.
businessCardBuffer

[out] A pointer to pointer variable that receives the interface pointer of a CFineBusinessCard variable which
represents a business card. This pointer must be released afterwards with the help of the FineFreeMemory
function.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

FineAreCjkLanguagesSupported Function

This function returns a non-zero value if the library supports recognition of the CIK languages.
C Syntax
int FineAreCjkLanguagesSupported() ;

Return value

It returns a non-zero value if the library supports recognition of the CJK languages.

FineDeinitialize Function

This function deinitializes the ABBYY Mobile OCR Engine library.
C Syntax
TFineErrorCode FineDeinitialize();

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also
Finelnitialize

23

ABBYY Mobile OCR Engine 4: Native Library API Reference

FineExecutionLogFunction Function

This function is implemented on the client side. It delivers to the client the information about execution. It is used as
input parameter in the FinelInitialize function.

C Syntax

void (*TFineExecutionLogFunction) (const WCHAR* str);

Parameters
str
[in] Log information.

See also

Finelnitialize

FineExtractBarcodes Function

This function finds and recognizes all barcodes on the image.
C Syntax
TFineErrorCode FineExtractBarcodes (

const CFineImage* image,

unsigned allowedTypes,

unsigned allowedOrientations,
unsigned allowedSupplements,

int hasChecksum,

int isCode39WithoutAsterisk,
int isBinaryInterpretedAsText,
TFineSupportedCodepage defaultCodePage,
CFineLayout** layoutBuff,

TFineProgressCallbackFunction progressCallback
)
Parameters
image
[in] The image to be recognized as a CFineImage variable.
allowedTypes
[in] The OR combination of the TFineBarcodeType constants that define acceptable barcode types.
allowedOrientations

[in] The OR combination of the TFineBarcodeOrientation constants that define the possible orientations of the
barcode.

allowedSupplements

[in] The OR combination of the TFineBarcodeSupplement constants that define the possible supplements of the
barcode. This parameter is ignored for barcodes without supplement. Set the parameter to FBS_Void if the barcode
you recognize does not have a supplement.

hasChecksum

[in] Should not be zero if the barcode should be recognized as a barcode with checksum. It is valid for Code39,
Interleaved25, Codabar, and Matrix25 barcodes. For these types of the barcodes, the last symbol of the barcode is
considered as control sum of all barcode symbols, and is checked during the recognition.

[sCode39WithoutAsterisk

[in] Should not be zero if the Code39 barcode has no start and stop symbol, the asterisk "*". It is valid for Code39
barcode. This parameter is ignored if the allowedTypes parameter set to more than one type.

[sBinaryInterpretedAsText

24

ABBYY Mobile OCR Engine 4: Native Library API Reference

[in] Should not be zero if byte data should be interpreted as text in the current code page. If this parameter is zero
the data will be stored in hexadecimal format. This parameter is ignored if the allowedTypes parameter set to more
than one type.

defaultCodePage

[in] A TFineSupportedCodepage constant that specifies a default code page. If barcode was created using code
page that differs from the specification code page, that code page should be specified in this parameter. This
parameter is ignored if the allowedTypes parameter set to more than one type.

layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable that contains the
recognition results. This pointer must be released afterwards with the help of the FineFreeMemory function.

progressCallback

[in] The pointer to the TFineProgressCallbackFunction callback function that delivers the progress information. It
can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

TFineBarcodeType
TFineBarcodeOrientation
TFineBarcodeSupplement

FineFreeMemory Function

This function releases memory allocated internally by the processing engine or by an explicit call to
FineAllocMemory. If during library initialization you specified a custom function for memory release, that function
will be used.

C Syntax
TFineErrorCode FineFreeMemory(void* ptr);

Parameters
ptr
[in] A pointer to memory which must be released.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineAllocMemory
Finelnitialize

FineGetLastErrorMessage Function

This function returns the human-readable description of the last error that occurred in ABBYY Mobile OCR Engine
library functions.

C Syntax

TFineErrorCode FineGetLastErrorMessage (const WCHAR** message);

Parameters
message

[out] A pointer to the string which receives the message.

25

ABBYY Mobile OCR Engine 4: Native Library API Reference

Return value

This function returns FEC_NotInitialized if the ABBYY Mobile OCR Engine library has not been initialized. It can also
return the other standard return values of ABBYY Mobile OCR Engine functions.

FineGetLicenselnfo Function
This function returns information about the current license.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each
third recognized business card.

C Syntax

TFineErrorCode FineGetLicenseInfo(WCHAR** licenseInfo);

Parameters
licenselnfo

[out] A string with license information. This pointer must be released afterwards with the help of the
FineFreeMemory function.

Return value

This function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineSetLicenselInfo

FineGetTextLines Function

This function detects text lines on the image.
C Syntax
TFineErrorCode FineGetTextLines (

const CFineImage* image,
TFineImageProcessingOptions imageProcessingOptions,
CFineRects** linesBuff,

TFineProgressCallbackFunction progressCallback,
)
Parameters
image
[in] The image to be recognized as a CFineImage variable.
imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing
parameters.

linesBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineRects variable which describes an
array of rectangles. This pointer must be released afterwards with the help of the FineFreeMemory function.

progressCallback
[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

26

ABBYY Mobile OCR Engine 4: Native Library API Reference

FineGetVersionInfo Function

This function returns the version of the library in following format: <major>.<minor>.<modification>.<build>. For
example, 4.2.1.10.

C Syntax

void FineGetVersionInfo (

int* major,
int* minor,
int* modification,
int* build
) i
Parameters
major
[out] A major version of the library.
minor
[out] A minor version of the library.
modification
[out] A modification version of the library.
build
[out] A build number of the library.

Return value

This function returns the standard return values of ABBYY Mobile OCR Engine functions.

FineGetWordSuggest Function

This function generates a list of suggestions for the selected word from the specified dictionary.
C Syntax
TFineErrorCode FineGetWordSuggest (

const TFineDictionaryPtr dictionary,

const WCHAR word[],
int wordLength,
int stringAssurence
CFineWordSuggestion** suggestionBuff
)
Parameters
dictionary

[in] The address of the specified dictionary as a TFineDictionaryPtr variable.
word/]

[in] The word suggestion for which will be generated.

wordLength

[in] The number of characters in the word suggestion for which will be generated.
stringAssurence

[in] The average confidence of characters in the word. It must in the range from 0 to 100. The more this parameter,
the less suggestions will be created.

suggestionBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineWordSuggestion variable which
represents an array of word suggestions. This pointer must be released afterwards with the help of the
FineFreeMemory function.

27

ABBYY Mobile OCR Engine 4: Native Library API Reference

Return value
It returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages
Working with Dictionaries

Finelnitialize Function

This function initializes the ABBYY Mobile OCR Engine library. It allows you to specify client-implemented functions for
memory allocation and release and a logging function.

Important! All functions of the ABBYY Mobile OCR Engine library should be called only from the thread in which the
library was initialized. You can not initialize the library in several threads simultaneously or parallel without
deinitialization.

C Syntax

TFineErrorCode FineInitialize (

TFineAllocMemoryFunction allocFunction,
TFineFreeMemoryFunction freeFunction,
TFineExecutionLogFunction executionLogFunction

) ¢
Parameters

allocFunction

[in] A custom function for memory allocation TFineAllocMemoryFunction. All memory used by the library will be
allocated through this function. This parameter is optional. If this parameter is zero, memory will be allocated in
standard way.

freeFunction

[in] A custom function for memory release TFineFreeMemoryFunction. This function is used to release memory
which was allocated by the function specified in the allocFunction parameter. This parameter is optional. If the
allocFunction parameter is zero, this parameter must be zero too.

executionLogFunction

[in] A custom function FineExecutionLogFunction which receives the logging information (errors, warnings and
tips which occur during the execution). This parameter is optional. If this parameter is zero, the logging will be
disabled.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineDeinitialize

Memory Management Functions
How to Use the Native Library

FineLoadImageFromFile Function

This function loads an image from a file.
C Syntax
TFineErrorCode FineLoadImageFromFile (

CFineImageFilex* imageFile,
TFineImagelLoadingOptions imageLoadingOptions,
const RECT* cropRect,
CFineImage** imageBuff

28

ABBYY Mobile OCR Engine 4: Native Library API Reference

Parameters

imagefile

[in] A pointer to the CFineImageFile object for loading an image from a file.
ImageLoadingOptions

[in] The OR combination of the TFineImagelLoadingOptionsFlags constants which define the image loading
parameters.

cropRect

[in] A pointer to a rectangle which defines the image crop. If it is zero, the image is loaded without crop.
imageBuff

[out] A pointer to pointer variable that receives the interface pointer to a CFineImage variable which stores the
loaded image. This pointer must be released afterwards with the help of the FineFreeMemory function.
Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

FineLoadImageFromInputStream Function

This function loads an image from the input stream.
C Syntax
TFineErrorCode FinelLoadImageFromInputStream (

CFineImageInputStream* imageInputStream,

TFineImageloadingOptions imageLoadingOptions,

const RECT¥* cropRect,
CFineImage** imageBuff
)
Parameters
imagelnputStream

[in] A pointer to the CFineImageInputStream object for loading data from the input stream.
ImageLoadingOptions

[in] OR combination of the TFineImageLoadingOptionsFlags constants which define the image loading
parameters.

cropRect

[in] A pointer to a rectangle to crop. If it is zero, the image is loaded without crop.

ImageBuff

[out] A pointer to pointer variable that receives the interface pointer to a CFineImage variable which stores the
loaded image. This pointer must be released afterwards with the help of the FineFreeMemory function.
Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

29

ABBYY Mobile OCR Engine 4: Native Library API Reference

FinePrebuildWordsInfo Function

This function returns the document layout information, including rectangles of words, without the text recognition. It
does not support CJK languages. If any CJK language is included in the /anguages parameter, the function returns an
error.

C Syntax

TFineErrorCode FinePrebuildWordsInfo (

const TLanguagelD languages|[],
const TFinePatternsPtr patterns,
const CFineImage* image,

TFineImageProcessingOptions imageProcessingOptions,
CFinePrebuiltLayoutInfo** finePrebuiltLayoutInfo,
TFineRotationType* rotation,

TFineProgressCallbackFunction progressCallback
) ;
Parameters
languages/]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined.
Note: It is better not to add to the list more than two recognition languages.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.
image

[in] The image to be recognized as a CFineImage variable.
imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants that define the image processing
parameters.

finePrebuiltLayoutiInfo

[out] A pointer to the CFinePrebuiltLayoutInfo pointer with the output results. This pointer must be released
afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant that specifies the rotation angle of an input image before recognition if the
FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.
Note: The recognized text coordinates correspond to a rotated image.

progressCallback
[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages
Working with Dictionaries

FinePreprocessImage Function

This function binarizes an image and significantly reduces the size of the image. It can also perform skew correction,
detect orientation etc., depending on the value of imageProcessingOptions parameter.

C Syntax
TFineErrorCode FinePreprocessImage (

const CFineImage* image,
TFineImageProcessingOptions imageProcessingOptions,
CFineImage** preprocessedImageBuff,

30

ABBYY Mobile OCR Engine 4: Native Library API Reference

CFineImageTransformationInfo** transformationInfo,

TFineProgressCallbackFunction progressCallback
)
Parameters
image
[in] The image to be binarized as a CFineImage variable.
ImageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing
parameters.

preprocessedimageBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineImage variable which describes the
resultant image. This pointer must be released afterwards with the help of the FineFreeMemory function.

transformationinfo

[out] A pointer to pointer variable that receives the interface pointer of a CFineImageTransformationInfo variable
which stores information about input image transformation. This pointer must be released afterwards with the help of
the FineFreeMemory function.

progressCallback
[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value
The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

FineRecognizeBarcode Function
This function recognizes an image of a barcode.

Consider also using the FineExtractBarcodes function, which can recognize more than one barcode on the image.
C Syntax
TFineErrorCode FineRecognizeBarcode (

const CFineImage* image,

DWORD allowedTypes,

DWORD allowedOrientations,

DWORD allowedSupplements,

int hasChecksum,

int isCode39WithoutAsterisk,
int isBinaryInterpretedAsText,
TFineSupportedCodepage defaultCodePage,

WCHAR unknownLetter,
CFineBarcode** resultBuff,

TFineProgressCallbackFunction progressCallback
)
Parameters
image
[in] The image to be recognized as a CFineImage variable.
allowedTypes
[in] The OR combination of the TFineBarcodeType constants that define acceptable barcode types.

allowedOrientations

31

ABBYY Mobile OCR Engine 4: Native Library API Reference

[in] The OR combination of the TFineBarcodeOrientation constants that define the possible orientations of the
barcode.

allowedSupplements

[in] The OR combination of the TFineBarcodeSupplement constants that define the possible supplements of the
barcode. This parameter is ignored for barcodes without supplement. Set the parameter to FBS_Void if the barcode
you recognize does not have a supplement.

hasChecksum

[in] Should not be zero if the barcode should be recognized as a barcode with checksum. It is valid for Code39,
Interleaved25, Codabar, and Matrix25 barcodes. For these types of the barcodes, the last symbol of the barcode is
considered as control sum of all barcode symbols, and is checked during the recognition.

[sCode39WithoutAsterisk

[in] Should not be zero if the Code39 barcode has no start and stop symbol, the asterisk "*". It is valid for Code39
barcode. This parameter is ignored if the allowedTypes parameter set to more than one type.

isBinaryInterpretedAsText

[in] Should not be zero if byte data should be interpreted as text in the current code page. If this parameter is zero
the data will be stored in hexadecimal format. This parameter is ignored if the allowedTypes parameter set to more
than one type.

defaultCodePage

[in] A TFineSupportedCodepage constant that specifies a default code page. If barcode was created using code
page that differs from the specification code page, that code page should be specified in this parameter. This
parameter is ignored if the allowedTypes parameter set to more than one type.

unknownlLetter

[in] A character that is written instead of unrecognized symbol or binary zero. Also it indicates unsuccessful
recognition result.

resultBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineBarcode variable that contains the
recognition results. This pointer must be released afterwards with the help of the FineFreeMemory function. If the
function fails to recognize the image as a barcode, this parameter contains a character specified in the unknownLetter
parameter with FTCQ_Min quality and have FBT_Unrecognized type in the Type property.

progressCallback

[in] The pointer to the TFineProgressCallbackFunction callback function that delivers the progress information. It
can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

TFineBarcodeType
TFineBarcodeOrientation
TFineBarcodeSupplement

FineRecognizeBusinessCard Function

This function recognizes all text lines on the image and analyzes the image as a business card in one step.

C Syntax
TFineErrorCode FineRecognizeBusinessCard (

const TLanguagelD languages|[],
const TFinePatternsPtr patterns,

const TFinePatternsPtr* cjkPatterns,
const TFineDictionaryPtr dictionaries/[],
const TFineKeywordsPtr keywords[],
const CFineImage* image,

32

ABBYY Mobile OCR Engine 4: Native Library API Reference

TFineImageProcessingOptions imageProcessingOptions,
TFineRecognitionMode recMode,
TFineRecognitionConfidencelevel confidenceLevel,

CFineBusinessCard** businessCardBuffer,
TFineRotationType* rotation,
TFineProgressCallbackFunction progressCallback,

TFinePrebuiltDataCallbackFunction prebuiltDataCallback
) i
Parameters
languages(]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not
recommend adding more than two recognition languages to the list.

For the best result of business card recognition, add the English language to the list of the recognition languages,
regardless of the language of the business card.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

cikPatterns

[in] The zero-terminated list of pointers to the patterns for CIJK languages.

dictionaries[]

[in] The zero-terminated list of dictionaries as an array of the TFineDictionaryPtr variables.
keywords[]

[in] The zero-terminated list of keywords dictionaries as an array of the TFineKeywordsPtr variables. For the best
result of business card recognition, add the English language keywords dictionary to the list, regardless of the
language of the business card.

image
[in] The image to be recognized as a CFineImage variable.
imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing
parameters.

recMode

[in] The TFineRecognitionMode constant which sets the recognition mode.

confidencelevel

[in] The TFineRecognitionConfidencelLevel constant which sets the recognition confidence level.
businessCardBuffer

[out] A pointer to pointer variable that receives the interface pointer of a CFineBusinessCard variable which
represents a business card. This pointer must be released afterwards with the help of the FineFreeMemory
function.

rotation

[out] The TFineRotationType constant which specifies the rotation angle of an input image before recognition if the
FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.
Note: The recognized text coordinates correspond to a rotated image.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.
prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document
layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

33

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

Recognizing Business Cards
Working with Languages
Working with Dictionaries

FineRecognizeImage Function

This function recognizes all text lines on the image.
C Syntax
TFineErrorCode FineRecognizeImage (

const TLanguagelD languages|[],
const TFinePatternsPtr patterns,

const TFinePatternsPtr* cjkPatterns,
const TFineDictionaryPtr dictionaries/[],
const CFineImage* image,
TFineImageProcessingOptions imageProcessingOptions,
TFineRecognitionMode recMode,
TFineRecognitionConfidencelLevel confidencelLevel,
CFineLayout** layoutBuff,
TFineRotationType* rotation,
TFineProgressCallbackFunction progressCallback,

TFinePrebuiltDataCallbackFunction prebuiltDataCallback
)
Parameters
languagesf]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not
recommend adding more than two recognition languages to the list.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

CjkPatterns

[in] The zero-terminated list of pointers to the patterns for CIJK languages.

dictionariesf]

[in] The zero-terminated list of dictionaries as an array of TFineDictionaryPtr variables.
image

[in] The image to be recognized as a CFineImage variable.

ImageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants that define the image processing
parameters.

recMode

[in] The TFineRecognitionMode constant that sets the recognition mode.

confidencelevel

[in] The TFineRecognitionConfidenceLevel constant that sets the recognition confidence level.
layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable that describes the
recognized text. This pointer must be released afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant that specifies the rotation angle of an input image before recognition if the
FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.
Note: The recognized text coordinates correspond to a rotated image.

34

ABBYY Mobile OCR Engine 4: Native Library API Reference

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.
prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document
layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages
Working with Dictionaries

FineRecognizeRegion Function

This function recognizes all text lines in the specified region. A region is an array of bounding rectangles. Each
rectangle represents one text line. This function is useful when you need to recognize a specific business card field
with the help of a custom dictionary.

C Syntax

TFineErrorCode FineRecognizeRegion (

const TLanguagelD languages|[],
const TFinePatternsPtr patterns,

const TFinePatternsPtr* cjkPatterns,
const TFineDictionaryPtr dictionaries/[],
const CFineImage* image,

int regionLength,
const RECT* regionRects,
TFineImageProcessingOptions imageProcessingOptions,
TFineRecognitionMode recMode,
TFineRecognitionConfidencelevel confidenceLevel,
CFineLayout** layoutBuff,
TFineRotationType* rotation,
TFineProgressCallbackFunction progressCallback,

TFinePrebuiltDataCallbackFunction prebuiltDataCallback
)
Parameters
languagesf]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not
recommend adding more than two recognition languages to the list.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

¢jkPatterns

[in] The zero-terminated list of pointers to the patterns for CIJK languages.

dictionariesf]

[in] The zero-terminated list of dictionaries as an array of the TFineDictionaryPtr variables.
image

[in] The image to be recognized as a CFineImage variable.

regionLength

[in] The number of rectangles of the specified region.

reglionRects

35

ABBYY Mobile OCR Engine 4: Native Library API Reference

[in] The array of rectangles of the specified region.
imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing
parameters.

recMode

[in] The TFineRecognitionMode constant which sets the recognition mode.

confidenceleve/

[in] The TFineRecognitionConfidenceLevel constant which sets the recognition confidence level.
layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable which describes the
recognized text. This pointer must be released afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant which specifies the rotation angle of an input image before recognition if the
FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.
Note: The recognized text coordinates correspond to a rotated image.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.
prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document
layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages
Working with Dictionaries

FineSetLicenselnfo Function

This function sets the license information. The ABBYY Mobile OCR Engine license file has to be loaded to the memory
and set with the help of this function.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each
third recognized business card.

C Syntax
TFineErrorCode FineSetLicenseInfo(const CFinelicenseInfo* licenseInfo);

Parameters
licenselnfo
[in] A constant pointer to the CFineLicenseInfo variable containing the license information.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineGetLicenselInfo
How to Use the Native Library

36

ABBYY Mobile OCR Engine 4: Native Library API Reference

FineSetRecognizerThreadsCount Function

This function is used to limit the number of threads that can be started simultaneously for multi-threaded processing
with ABBYY Mobile OCR Engine.

By default, all recognition operations are performed in parallel, using up to 4 threads. Call this function after the
library is initialized if you need to change this limitation.

Note: For multi-threaded processing the Pthreads-win32 library is used. This library is included in the distribution as a
separate dynamic link library (pthreadvC2.dll).

C Syntax

TFineErrorCode FineSetRecognizerThreadsCount (int threadsCount);

Parameters
threadsCount

[in] The maximum number of threads that can be run at once.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Finelnitialize
How to Use the Native Library

Callback Functions
This section contains:
e TFinePrebuiltDataCallbackFunction

e TFineProgressCallbackFunction

TFinePrebuiltDataCallbackFunction

A pointer to the callback function that should be implemented on the client side. It delivers to the client the prebuilt
information about the document layout, text blocks and lines before the text recognition.

C Syntax

typedef void (*TFinePrebuiltDataCallbackFunction) (

TFinePrebuiltDataType dataType,
void* data
)
Parameters
dataType
[in] A TFinePrebuiltDataType constant that specifies the pointer type to which the data parameter should be cast.
data
[in] A pointer to a structure with prebuilt data of the type that is specified in the dataType parameter.

Return value

This function returns zero to break recognition process.

See also

FineAnalyzeImage
FineRecognizeBlocks
FineRecognizeImage
FineRecognizeRegion
FineRecognizeBusinessCard

37

ABBYY Mobile OCR Engine 4: Native Library API Reference

TFineProgressCallbackFunction

This is a callback function that should be implemented on the client side. It delivers to the client the information
about the approximate percentage of analysis or recognition and warnings or errors that have occurred during
processing.

C Syntax

int (*TFineProgressCallbackFunction) (

int processedPercentage,
DWORD warning,
void* warningData

)i

Parameters

processedPercentage

[in] The percentage of the current work which has already been done. It is in the range from 0 to 100.
warning

[in] The constant of the TFineWarningCode enumeration which describes the warning which has occurred during
processing.

warningData

[in] A pointer to data structure with the details of the warning. Its contents depend on the type of the warning. See
the description of the TFineWarningCode constants for details.

Return value

If this function returns zero, the recognition is cancelled.

Sample
Here is a sample implementation of the callback function:

int TFineProgressCallbackFunction(int processedPercentage, DWORD warning, void*
warningData)

{
fprintf (TraceFile, "%d%% of the work is done.\n", processedPercentage);
if (warning == FWC ProbablyBadImage) {
fprintf (TraceFile, "The image quality is too low.\n");
}
if (processedPercentage < 50 && (warning == FWC SlowRecognition) != 0) {
return O;
} else {
return 1;
}
}

See also

FineAnalyzeImage
FinePrebuildWordsInfo
FineRecognizeBlocks
FineRecognizeImage
FineRecognizeRegion
FineRecognizeBusinessCard

38

ABBYY Mobile OCR Engine 4: Native Library API Reference

Custom Memory Management Functions

ABBYY Mobile OCR Engine provides the FineAllocMemory and FineFreeMemory functions to deal with memory
management. However, if you need to use special allocation-deallocation algorithms, you can implement your own
functions:

e TFineAllocMemoryFunction

e TFineFreeMemoryFunction

These pointers to functions allow you to use your own algorithms for memory allocation and release. When initializing
the library, pass the pointers to the functions you implemented as input parameters to the Finelnitialize function,
and the internal memory operations will be executed using these functions.

See also

FineInitialize

TFineAllocMemoryFunction Function

This function is implemented on the client side and allows you to use your preferred memory management algorithm.
It is used to allocate memory.

C Syntax

void* (*TFineAllocMemoryFunction) (int size);

Parameters

size

[in] The size of memory buffer that needs to be allocated.
Return value

The function returns the address to the allocated memory buffer.

See also

TFineFreeMemoryFunction
FineAllocMemory

TFineFreeMemoryFunction Function

This function is implemented on the client side and allows you to use your preferred memory management algorithm.
It releases memory allocated by the call to TFineAllocMemoryFunction.

C Syntax

void (*TFineFreeMemoryFunction) (void* ptr);

Parameters
ptr
[in] A pointer to memory which must be released.

Return value

The function does not have a return value.

See also

TFineAllocMemoryFunction
FineFreeMemory

39

ABBYY Mobile OCR Engine 4: Native Library API Reference

Structures

This section contains the description of ABBYY Mobile OCR Engine structures:

CFineAngle

CFineBarcode
CFineBcrField
CFineBcrFieldComponent
CFineBusinessCard
CFineImage
CFineImageFile
CFineImagelnputStream
CFinelmageTransformationInfo
CFineLayout
CFineLicenseInfo
CFinePrebuiltLayoutInfo
CFinePrebuiltTextBlockInfo

CFinePrebuiltTextLinelnfo

CFineRects

CFineTextBlock

CFineTextCharacter

CFineTextLine

CFineWarningDataWronglLanguages

CFineWordInfo
CFineWordSuggestion

CFineWordVariant

CFineAngle Structure

This structure describes the value of the angle tangent.
C Syntax
typedef struct tagCFineAngle(

int Numerator;

int Denominator;

} CFineAngle;

Fields

Name Type Description

Denominator int Stores the denominator of the angle tangent.
Numerator int Stores the numerator of the angle tangent.

40

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

CFineImageTransformationInfo

CFineBarcode Structure

This structure describes the result of the barcode recognition.

C Syntax

typedef struct tagCFineBarcode {

TFineBarcodeType Type;

CFineTextLine TextLine;
} CFineBarcode;
Fields
Name Type Description
TextLine CFineTextLine Stores the recognized text of the barcode.
Type TFineBarcodeType Stores the barcode type.

Output parameter

This structure is the output parameter of the FineRecognizeBarcode function.

See also
CFineLayout

CFineBcrField Structure

This structure represents a business card field.

C Syntax

typedef struct tagCFineBcrField ({
TBcrFieldType Type;
int TextLinesCount;
CFineTextLine* TextLines;
int ComponentsCount;

CFineBcrFieldComponent* Components;

} CFineBcrField;

Fields

Name Type Description

Components CFineBcrFieldComponent* | Stores the field components. The field
components are stored in the order of
appearance on the business card.

ComponentsCount | int Stores the number of field components. It is zero
if the field is not divided.

TextLines CFineTextLine* Stores recognized text in the card field. It may
contain several lines.

TextLinesCount int Stores the number of text lines in the card field.

Type TBcrFieldType Stores the type of a business card field.

See also
CFineBusinessCard

41

ABBYY Mobile OCR Engine 4: Native Library API Reference

CFineBusinessCard Structure

This structure represents a business card.
C Syntax
typedef struct tagCFineBusinessCard ({

CFineBcrField* Fields;
int FieldsCount;

} CFineBusinessCard;

Fields

Name Type Description

Fields CFineBcrField* Stores the array of business card fields.
FieldsCount int Stores the number of fields.

Output parameter

This structure is the output parameter of the FineAnalyzeTextAsBusinessCard, FineRecognizeBusinessCard
functions.

CFineBusinessCard Structure

This structure represents a business card.
C Syntax
typedef struct tagCFineBusinessCard {

CFineBcrField* Fields;
int FieldsCount;

} CFineBusinessCard;

Fields

Name Type Description

Fields CFineBcrField* Stores the array of business card fields.
FieldsCount int Stores the number of fields.

Output parameter

This structure is the output parameter of the FineAnalyzeTextAsBusinessCard, FineRecognizeBusinessCard
functions.

CFineIlmage Structure

This structure represents the image. ABBYY Mobile OCR Engine supports the following formats:
e black and white — 1 bit-per-pixel (bpp) image, where 0 is black and 1 is white;

e grey— 8 bpp image, where 0 is black and 255 is white;

e color— 24 bpp image. The byte order is BGR, therefore (0,0,0) is black and (255,255,255) is white.

C Syntax
typedef struct tagCFinelmage {

int ImageWidth;
int ImageHeight;
int ImageByteWidth;
int BitsPerPixel;
int Resolution;
BYTE* Image;

} CFineImage;

ABBYY Mobile OCR Engine 4: Native Library API Reference

Fields

Name Type Description

BitsPerPixel int Stores the number of bits used for one pixel. It should be 1 for black and
white image, 8 for gray, 24 for color.

Image BYTE* | Stores the image bitmap line-by-line, from top to bottom. Each line starts
at the BYTE boundary.

ImageByteWidth | int Stores the number of bytes occupied by each raster line. The value of this
field should be at least the smallest integer greater than or equal to
(ImageWidth * BitsPerPixel/8).

ImageHeight int Stores the height of the image in pixels.

ImageWidth int Stores the width of the image in pixels.

Resolution int Stores the horizontal and vertical resolution in dpi.

Input parameter

This structure is passed as an input parameter to the FineAnalyzeImage, FineGetTextLines, FinePrebuildWordsInfo,
FinePreprocessImage, FineRecognizeBarcode, FineRecognizeBlocks, FineRecognizeBusinessCard,
FineRecognizeImage, FineRecognizeRegion functions.

Output parameter

This structure is the output parameter of the FineLoadImageFromFile, FineLoadImageFromInputStream
function.

CFineImageFile Structure

This structure contains methods for loading an image from a file.
C Syntax
typedef struct tagCFinelImageFile ({

int (*Read) (void* file, BYTE* buffer, int size);
int (*Seek) (void* file, int offset, TFinelmageFileSeekPosition from) ;
int (*GetLength) (void* file);

} CFineImageFile;

Methods

Name Description

GetLength Returns the file size in bytes.

Read Reads an image from a file.

Seek Sets the position indicator associated with the file to a new position.

Input parameter
This structure is passed as an input parameter to the FineLoadImageFromFile function.

GetLength Method of CFineImageFile Structure

This method returns the size of the image file in bytes.
C Syntax
int (*GetLength) (void* file);

Parameters
file
A pointer to the CFineImageFile object.

43

ABBYY Mobile OCR Engine 4: Native Library API Reference

Return value

It returns the file size in bytes.

See also

CFineImageFile

Read Method of CFinelmageFile Structure
This method loads an image from a file into memory.
C Syntax
int (*Read) (
void* file,
BYTE* buffer,
int size
)
Parameters
file
A pointer to the CFineImageFile object.
buftfer
A pointer to the area of memory which receives the data from the file.
size
The size of the data that will be stored in the buffer parameter.
Return value
It returns the number of the loaded bytes. The return value can be less than the size parameter. If the value is less or
equal to zero, no data have been loaded.
See also

CFineImageFile

Seek Method of CFineImageFile Structure

This method sets the position indicator associated with the file to a new position.

C Syntax

int (*Seek) (
void* file,
int offset,

TFineImageFileSeekPosition from
)
Parameters
file
A pointer to the CFineImageFile object.
offset
A value to which the position indicator should be set or incremented.
from

A constant from the TFineImageFileSeekPosition enumeration that specifies whether the position indicator should
be set to or incremented by the offset parameter.

Return value

It returns zero if a new position is set successfully; otherwise, non-zero value that is interpreted as an error.

44

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

CFineImageFile

CFineImagelnputStream Structure

This structure contains methods for loading an image from the input stream.
C Syntax
typedef struct tagCFinelImageInputStream {

int (*Read) (void* inputStream, BYTE* buffer, int size);
int (*Skip) (void* inputStream, int size);
} CFineImagelInputStream;

Methods

Name Description

Read Reads an image from the input stream.

Skip Skips the specified number of bytes from the input stream.

Input parameter

This structure is passed as an input parameter to the FineLoadImageFromInputStream function.

Read Method of CFineImagelnputStream Structure

This method loads an image from the input stream.
C Syntax
int (*Read) (
void* inputStream,
BYTE* buffer,
int size
)
Parameters
inputStream
A pointer to the CFineImageInputStream object.
buffer
Data from the input stream is written to this parameter.
size
The size of the loading data that are stored in the buffer parameter.
Return value
It returns the number of the loaded bytes. The return value can be less than the size parameter. If the value is less or
equal to zero, no data have been loaded.
See also

CFineImageInputStream

Skip Method of CFinelmagelnputStream Structure
This method skips the specified number of bytes from the input stream.

Note: A pointer to the Skip function can be zero, in this case, the Read function is used.

C Syntax
int (*Skip) (

void* inputStream,

45

ABBYY Mobile OCR Engine 4: Native Library API Reference

int size

)i

Parameters
InputStream

A pointer to the CFineImageInputStream object.

size

The size of the skipped data in bytes.

Return value

It returns the number of the skipped bytes that should be equal to the size parameter. If the value does not equal to
the size parameter, it is interpreted as a reading error.

See also

CFineImagelInputStream

CFineImageTransformationInfo Structure

This structure stores information about the image transformation.

C Syntax

typedef struct tagCFinelImageTransformationInfo {

CFineAngle

SkewAngle;

} CFineImageTransformationInfo;

Fields
Name Type Description
SkewAngle CFineAngle Stores the value of the skew angle tangent.

Output parameter

This structure is the output parameter of the FinePreprocessImage function.

CFineLayout Structure

This structure describes the recognition result of an image. It can contain a set of text blocks with the recognized text
and a set of barcode blocks with the recognized barcodes.

C Syntax

typedef struct tagCFinelLayout {
CFineTextBlock* TextBlocks;

int TextBlocksCount;
CFineBarcode* BarcodeBlocks;
int BarcodeBlocksCount,;

} CFinelayout;

Fields

Name

Type

Description

BarcodeBlocks

CFineBarcode*

The pointer to the array of barcode blocks found on the
image.

BarcodeBlocksCount | int

The number of barcode blocks.

TextBlocks CFineTextBlock* | The pointer to the array of text blocks found on the
image.
TextBlocksCount int The number of text blocks.

46

ABBYY Mobile OCR Engine 4: Native Library API Reference

Input parameter
This structure is passed as an input parameter to the FineAnalyzeTextAsBusinessCard function.

Output parameter

This structure is the output parameter of the FineAnalyzeImage, FineExtractBarcodes, FineRecognizelmage,
FineRecognizeRegion functions.

CFineLicenselnfo Structure

This structure defines license information.

C Syntax

typedef struct tagCFinelLicenselInfo {
BYTE* LicenseData;
DWORD DataLength;

const WCHAR* ApplicationId;

} CFineLicenselInfo;

Fields

Name Type Description

ApplicationId | WCHAR* | Stores a string with application identification.
Important! The ApplicationId must correspond to the application ID in
the license file. If you do not know your application ID, contact your sales

manager.
DatalLength DWORD | Stores the length of the data loaded from the license file.
LicenseData BYTE* Stores a pointer to the memory buffer that contains data loaded from the
license file.

Input parameter

This structure is passed as an input parameter to the FineSetLicenseInfo function.

CFinePrebuiltLayoutInfo Structure

This structure stores information about the document layout. The information is available before the text recognition.

C Syntax
typedef struct tagCFinePrebuiltLayoutInfo {

CFinePrebuiltTextBlockInfo* TextBlocks;
int TextBlocksCount;
} CFinePrebuiltLayoutInfo;

Fields

Name Type Description

TextBlocks CFinePrebuiltTextBlockInfo* | Stores a pointer to an array of the
CFinePrebuiltTextBlockInfo objects with
information about the text blocks.

TextBlocksCount | int Stores the number of elements in the
TextBlocks field.

Input parameter

This structure is passed as an input parameter to the TFinePrebuiltDataCallbackFunction if the dataType
argument is set to FPDT_WordsInfo.

Output parameter
This structure is the output parameter of the FinePrebuildWordsInfo function.

47

ABBYY Mobile OCR Engine 4: Native Library API Reference

CFinePrebuiltTextBlockInfo Structure

This structure stores information about the text block. The information is available before the text recognition.
C Syntax
typedef struct tagCFinePrebuiltTextBlockInfo {

RECT* RegionRects;
int RegionRectsCount;
CFinePrebuiltTextLineInfo* Lines;
int LinesCount;
} CFinePrebuiltTextBlockInfo;

Fields

Name Type Description

Lines CFinePrebuiltTextLineInfo* | Stores a pointer to an array of the
CFinePrebuiltTextLineInfo objects with
information about the text lines in the text
block.

LinesCount int Stores the number of elements in the Lines
field.

RegionRects RECT* Stores a pointer to an array of the rectangles
that describe an image region with the text
block.

RegionRectsCount | int Stores the number of elements in the
RegionRects field.

See also

CFinePrebuiltLayoutInfo

CFinePrebuiltTextLineInfo Structure

This structure stores information about the text line. The information is available before the text recognition.

C Syntax
typedef struct tagCFinePrebuiltTextLineInfo ({

RECT Rect;
RECT* WordsRects;
int WordsRectsCount;
} CFinePrebuiltTextLineInfo;

Fields

Name Type Description

Rect RECT | Stores the bounding rectangle of the line.

WordsRects RECT* | Stores a pointer to an array of the bounding rectangles of words in the
line.

WordsRectsCount | int Stores the number of elements in the WordsRects field.

See also

CFinePrebuiltTextBlockInfo

CFineRects Structure

This structure describes an array of rectangles.
C Syntax
typedef struct tagCFineRects {

RECT* Rects;

48

ABBYY Mobile OCR Engine 4: Native Library API Reference

int RectsCount;

} CFineRects;

Fields

Name Type Description

Rects RECT* Stores the pointer to an array of rectangles.
RectsCount int Stores the number of rectangles in array.

Output parameter

This structure is the output parameter of the FineGetTextLines function.

CFineTextBlock Structure

This structure describes a block of the recognized text.

C Syntax

typedef struct tagCFineTextBlock ({

CFineTextLine* Lines;

int LinesCount;

RECT* RegionRects;

int RegionRectsCount;
DWORD Attributes

} CFineTextBlock;

Fields

Name Type Description

Attributes DWORD Stores the attributes of the text block as the OR combination
of the TFineTextBlockAttributes constants.

Lines CFineTextLine* | Stores the pointer to an array of text lines.

LinesCount int Stores the number of text lines.

RegionRects RECT* Stores the pointer to an array of rectangles which describes
the region of text block. A region is a set of rectangles
positioned one under another in such a way that the top line
of the lower rectangle is the bottom line of the upper one (so
that the rectangles do not overlap).

RegionRectsCount | int Stores the number of region rectangles.

Input parameter

An array of objects of this type is passed as an input parameter to the FineRecognizeBlocks function.

See also
CFinelLayout

CFineTextCharacter Structure

This structure describes a character in the recognized text.

C Syntax

typedef struct tagCFineTextCharacter ({
WCHAR Unicode;
WORD SmalllLetterHeight;

RECT Rect;

DWORD Attributes;
BYTE Quality;
} CFineTextCharacter;

ABBYY Mobile OCR Engine 4: Native Library API Reference

Fields

Name Type Description

Attributes DWORD | The OR combination of the TFineCharacterAttributes constants
which specifies the attributes detected for this character.

Rect RECT Stores the bounding rectangle of a character or ligature.

SmallLetterHeight | WORD | Stores the height of a small letter for the detected font.

Quality BYTE Stores the character recognition quality. The value of this field must
be in the range from FTCQ_Min to FTCQ_Max.

Unicode WCHAR | Stores the character code in the Unicode standard.

CFineTextLine Structure

This structure describes a line of the recognized text.
C Syntax
typedef struct tagCFineTextLine {

CFineTextCharacter* Chars;

int CharCount;
CFineWordInfo* Words;

int WordsCount;
RECT Rect;

int BaseLine;

} CFineTextLine;

Fields

Name Type Description

BaseLine int Stores the coordinate of the base line.

Chars CFineTextCharacter* | Stores a pointer to characters buffer.

CharCount int Stores the number of characters in the line.

Rect RECT Stores the bounding rectangle of the line.

Note: For barcode recognition this field is empty.

Words CFineWordInfo* Stores a pointer to an array of the CFineWordInfo objects
with the word information structures. This field is available if
the FIPO_BuildWordsInfo flag is passed to the recognition
function.

WordsCount | int Stores the number of elements in the Words field.

See also

CFineBarcode

CFineWordInfo
CFineTextCharacter

CFineWarningDataWronglLanguages Structure

This structure defines an array of recommended recognition languages. A pointer to this structure will be stored in the
warningData parameter of the TFineProgressCallbackFunction when the warning which occurred is
FWC_ProbablyWrongLanguages.

C Syntax

typedef struct tagCFineWarningDataWrongLanguages {

TLanguageID* RecommendedLanguages;
int RecommendedLanguagesCount;
} CFineWarningDataWrongLanguages;

50

ABBYY Mobile OCR Engine 4: Native Library API Reference

Fields
Name Type Description
RecommendedLanguages TLanguagelID* | Stores a pointer to an array of

recommended recognition language IDs.

RecommendedLanguagesCount | int

Stores the number of recommended languages.

Output parameter

This structure is the output parameter of the TFineProgressCallbackFunction when the warning which occurred is
FWC_ProbablyWrongLanguages.

CFineWordInfo Structure

This structure represents information related to a part of text after splitting the text into words.

C Syntax

typedef struct tagCFineWordInfo {

CFineWordVariant* Variants;

int VariantsCount;
DWORD Attributes;
RECT Rect;
DWORD SmallletterHeight;
} CFineWordInfo;
Fields
Name Type Description
Attributes DWORD The OR combination of the TFineWordAttributes
constants which specifies to which word model this part
of text conforms.
Rect RECT The bounding rectangle of the part of the text.
Note: If the Attributes field has the
FWA_HyphenatedWord flag, this field should be ignored.
SmallLetterHeight | DWORD The medium height of small letters of the word.

Variants CFineWordVariant* | An array of the word and its derivatives. This array
contains at least one word that is the recognized word as
is.

VariantsCount int The number of elements in the Variants field.

See also

CFineTextLine
CFineWordVariant

CFineWordSuggestion Structure

This structure defines an array of word suggestions.

C Syntax

typedef struct tagCFineWordSuggestion {
WCHAR** Words;
int WordsCount;

} CFineWordSuggestion;

Fields

Name Type Description

Words WCHAR** | Stores a pointer to an array of words. A word is Unicode and zero-
terminated.

51

ABBYY Mobile OCR Engine 4: Native Library API Reference

WordsCount | int

Stores the number of words.

Output parameter

This structure is the output parameter of the FineGetWordSuggest function.

CFineWordVariant Structure

This structure defines the recognized word or its derivatives (primary form and corrections of the word).

C Syntax

typedef struct tagCFineWordVariant {
WCHAR* Chars;
int CharCount;
TLanguageID* WordLanguages;
int WordLanguagesCount;

TFineWordVariantType Type;

} CFineWordVariant;

Fields

Name Type Description

Chars WCHAR* The string containing the word variant.

CharCount int The length of the word variant.

Type TFineWordVariantType | The type of the word variant.

WordLanguages TLanguagelID* The languages to which the word belongs.

WordLanguagesCount | int The number of elements in the
WordLanguages field.

See also
CFineWordInfo

Enumerations

This section contains:

BIT_FLAG Macros
TBcrComponentType
TBcrFieldType
TFineBarcodeOrientation
TFineBarcodeSupplement
TFineBarcodeType
TFineCharacterAttributes
TFineErrorCode
TFineImageFileSeekPosition
TFineImageLoadingOptionsFlags
TFineImageProcessingOptionsFlags

TFinePrebuiltDataType

52

ABBYY Mobile OCR Engine 4: Native Library API Reference

e TFineRecognitionConfidencelLevel
e TFineRecognitionMode

¢ TFineRotationType

e TFineSupportedCodepage

e TFineTextBlockAttributes

e TFineTextCharacterQuality

e TFineWarningCode

e TFineWordAttributes

e TFineWordVariantType

e TlLanguagelD

BIT_FLAG Macros

This macros returns a number with one non-zero bit in the n position.

C Syntax
BIT FIAG(n) (1 << (n))
See also

TFineCharacterAttributes
TFineWarningCode
TFineImageProcessingOptionsFlags

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineCharacterAttributes {
FCA Ttalic = BIT FLAG(0),
FCA Bold = BIT FLAG(1),
FCA Underlined = BIT FLAG(2),
FCA Strikethrough = BIT FLAG(3),
FCA Smallcaps = BIT FLAG(4),
FCA Superscript = BIT FLAG(5),
FCA Uncertain = BIT FILAG(16),
FCA BarcodeBinaryDataHexed = BIT FLAG(17),
FCA BarcodeBinaryZero = BIT FLAG(18),
)

FCA BarcodeStartStopSymbol = BIT FLAG (
} TFineCharacterAttributes;

19

~

Elements

Name Description

FCA_Ttalic Specifies whether the character is italic.
FCA_Bold Specifies whether the character is bold.

FCA_Underlined

Specifies whether the character is underlined.

FCA_Strikethrough

Specifies whether the character is strikeout.

53

ABBYY Mobile OCR Engine 4: Native Library API Reference

FCA_Smallcaps

Specifies whether the character has the "small caps" style. This means
that the small characters are displayed as small capitals.

FCA_Superscript

Specifies whether the character is superscript.

FCA_Uncertain

Specifies whether the character has been recognized uncertainly. The
confidence level at which characters are marked as uncertain must be
set during recognition as a TFineRecognitionConfidenceLevel
constant.

FCA_BarcodeBinaryDataHexed

Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero

Specifies a zero binary symbol replaced by character that is specified in
the FineRecognizeBarcode function as unknownlLetter for correct
representation.

FCA_BarcodeStartStopSymbol

Specifies the start and stop symbols. This flag is valid for Code39 and
Codabar barcodes.

See also
CFineTextCharacter

TBcrFieldType

TBcrFieldType enumeration constants are used to describe different types of business card fields.
typedef enum tagTBcrFieldType {

BFT Phone,
BFT Fax,
BFT Mobile,
BFT Email,
BET Web,
BFT Address,
BFT Name,
BFT Company,
BFT Job,
BFT Text,
BFT Count

} TBcrFieldType;

Elements

Name Description
BFT_Phone A phone number.
BFT_Fax A fax number.
BFT_Mobile A cell phone number.
BFT_Email An e-mail address.
BFT_Web A web address.
BFT_Address A post address.
BFT_Name A full name.
BFT_Company | A company name.
BFT_Job A job title.

BFT_Text The recognized text.
BFT_Count The auxiliary constant which stores the nhumber of constants in the enumeration.
See also

CFineBcrField

54

ABBYY Mobile OCR Engine 4: Native Library API Reference

TFineBarcodeOrientation

TFineBarcodeOrientation enumeration constants are used to set the barcode orientation in the
FineRecognizeBarcode function. The constants are defined using the BIT_FLAG macros or as a combination.
typedef enum tagTFineBarcodeOrientation {

FBO LeftToRight = BIT FLAG(0),

FBO DownToTop = BIT FLAG(1),
FBO RightToLeft = BIT FLAG(2),
FBO TopToDown = BIT FLAG(3),

FBO AutoDetect = FBO LeftToRight | FBO DownToTop | FBO RightToLeft | FBO TopToDown
} TFineBarcodeOrientation;

Flag

Name Description

FBO_LeftToRight Barcode is oriented from left to right.
FBO_DownToTop Barcode is oriented from down to top.
FBO_RightToleft Barcode is oriented from right to left.
FBO_TopToDown Barcode is oriented from top to down.
FBO_AutoDetect The barcode orientation will be detected automatically.
See also

FineRecognizeBarcode

TFineBarcodeSupplement

TFineBarcodeSupplement enumeration constants are used to set the barcode supplement in the
FineRecognizeBarcode function. The constants are defined using the BIT_FLAG macros or as a combination.
typedef enum tagTFineBarcodeSupplement {

FBS Void = BIT FLAG(0),

FBS 2Digit = BIT FLAG(1),

FBS 5Digit = BIT FLAG(2),

FBS AutoDetect = FBS Void | FBS 2Digit | FBS 5Digit,

FBS AnySupplement = FBS 2Digit | FBS 5Digit

} TFineBarcodeSupplement;

Flag

Name Description

FBS_Void The empty supplement.

FBS_2Digit The 2-digit supplement.

FBS_5Digit The 5-digit supplement.

FBS_AutoDetect Forces ABBYY Mobile OCR Engine to automatically detect the barcode type during
recognition.

FBS_AnySupplement | Combination of all non-empty supplements.

See also

FineRecognizeBarcode

ABBYY Mobile OCR Engine 4: Native Library API Reference

TFineBarcodeType

TFineBarcodeType enumeration constants are used to set the barcode type in the FineRecognizeBarcode
function. The constants are defined using the BIT_FLAG macros or as a combination.
typedef enum tagTFineBarcodeType {
FBT Unrecognized = 0,
FBT Code39 = BIT FLAG(0),
FBT Interleaved25 = BIT FLAG(1),
FBT Eanl3 = BIT FLAG(2),
FBT Codel28 = BIT FLAG(3),
FBT Ean8 = BIT FLAG(4),
FBT Pdf417 = BIT FLAG(5),
FBT Codabar = BIT FLAG(6),
FBT Upce = BIT FLAG(7),
FBT Industrial25 = BIT FLAG(8),
FBT Iata25 = BIT FLAG(9),
FBT Matrix25 = BIT FLAG(10),
FBT Code93 = BIT FLAG(11),
FBT Postnet = BIT FLAG(12),
FBT Uccl28 = BIT FLAG(13),
FBT Patch = BIT FLAG(14),
FBT Aztec = BIT FLAG(15),
FBT Datamatrix = BIT FLAG(16),
FBT Qrcode = BIT FLAG(17),
FBT Upca = BIT FLAG(18),
FBT Maxicode = BIT FLAG(19),
FBT AnylD = FBT Code39 | FBT Interleaved25 |
FBT Eanl3 | FBT Codel28 | FBT Ean8 | FBT Codabar |
FBT Upce | FBT Industrial25 | FBT Iata25 |
FBT Matrix25 | FBT Code93 | FBT Uccl28 |
FBT Patch | FBT Postnet | FBT Upca,
FBT Square2D = FBT Aztec | FBT Datamatrix | FBT Qrcode | FBT Maxicode,
FBT AnylDWithSupplement = FBT Eanl3 | FBT Ean8 | FBT Upce | FBT Upca
} TFineBarcodeType;

Flag

Name Description

FBT_Unrecognized Denotes unrecognized type of barcode. It is used as the return value if
ABBYY Mobile OCR Engine has failed to detect the type of barcode.

FBT_Code39 Barcode in Code 39 standard.

FBT_Interleaved25 Barcode in Interleaved 2 of 5 standard.

FBT_Ean13 Barcode in EAN-13 standard.

FBT_Code128 Barcode in Code 128 standard.

FBT_Ean8 Barcode in EAN-8 standard.

FBT_Pdf417 Barcode in PDF417 standard.

FBT_Codabar Barcode in Codabar standard.

FBT_Upce Barcode in UPC-E standard.

FBT_Industrial25 Barcode in Industrial 2 of 5 standard.

FBT Iata25 Barcode in IATA 2 of 5 standard.

FBT_Matrix25 Barcode in Matrix 2 of 5 standard.

FBT_Code93 Barcode in Code 93 standard.

ABBYY Mobile OCR Engine 4: Native Library API Reference

FBT_Postnet Barcode in Postnet standard.

FBT_Ucc128 Barcode in GS1-128 standard. The former name was UCC-128.
FBT_Patch Barcode in Patch standard.

FBT_Aztec Barcode in Aztec standard.

FBT_Datamatrix Barcode in Data Matrix standard.

FBT_Qrcode Barcode in QR Code standard.

FBT_Upca Barcode in UPC-A standard.

FBT_Maxicode Barcode in MaxiCode standard.

FBT_AnylD Combination of all one-dimensional barcodes.

FBT_Square2D Combination of all two-dimensional barcodes.
FBT_Any1DWithSupplement | Combination of all one-dimensional barcodes that can have a supplement.

See also

CFineBarcode
FineRecognizeBarcode

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineCharacterAttributes

FCA Italic

FCA Bold

FCA Underlined
FCA Strikethrough
FCA Smallcaps

FCA Superscript

FCA Uncertain

FCA BarcodeBinaryZero

’
)
FCA BarcodeBinaryDataHexed = BIT FLAG(17),
)
)

FCA BarcodeStartStopSymbol = BIT FLAG(19

= BIT FLAG (
= BIT FLAG (
= BIT FLAG (
= BIT FLAG (
= BIT FLAG (
= BIT FLAG(5

= BIT FLAG(16

Ssw NP o~
~ 0~ ~

—_— - — — — —
~

~

= BIT FLAG(18

~

} TFineCharacterAttributes;

Elements

Name Description

FCA_Italic Specifies whether the character is italic.
FCA_Bold Specifies whether the character is bold.

FCA_Underlined

Specifies whether the character is underlined.

FCA_Strikethrough

Specifies whether the character is strikeout.

FCA_Smallcaps

Specifies whether the character has the "small caps" style. This means
that the small characters are displayed as small capitals.

FCA_Superscript

Specifies whether the character is superscript.

FCA_Uncertain

Specifies whether the character has been recognized uncertainly. The
confidence level at which characters are marked as uncertain must be
set during recognition as a TFineRecognitionConfidenceLevel
constant.

FCA_BarcodeBinaryDataHexed

Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero

Specifies a zero binary symbol replaced by character that is specified in

57

ABBYY Mobile OCR Engine 4: Native Library API Reference

the FineRecognizeBarcode function as unknownlLetter for correct
representation.

FCA_BarcodeStartStopSymbol | Specifies the start and stop symbols. This flag is valid for Code39 and

Codabar barcodes.

See also
CFineTextCharacter

TFineImageFileSeekPosition

TFineImageFileSeekPosition enumeration constants are used in the ffom parameter of the Seek method of the

CFineImageFile structure.

typedef enum tagTFineImageFileSeekPosition {

FIFSP Begin,
FIFSP Current,

} TFineImageFileSeekPosition;

Flag

Name Description

FIFSP_Begin Specifies that the from parameter should equal the offset parameter.
FIFSP_Current | Specifies that the from parameter should be incremented to the offset parameter.

See also

CFineImageFile::Seek

TFineImageLoadingOptionsFlags

TFineImageLoadingOptionsFlags enumeration constants are used to set the input parameter of the
FineLoadImageFromFile and FineLoadImageFromInputStream functions. Some of the constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineImagelLoadingOptionsFlags{

FILO Default
FILO ApplyExifOrientation

FILO CropUsingRelativeCoordinates = BIT FLAG (

= 0,
= BIT FLAG(),

0
1)

} TFineImageloadingOptionsFlags;

Flag

Name

Description

FILO_Default

Specifies that an image is loaded as is, ignoring any metadata, and
the crop rectangle coordinates are in pixels.

FILO_ApplyExifOrientation

Specifies that the EXIF orientation information is applied to the
image.

FILO_CropUsingRelativeCoordinates

Specifies that the crop rectangle coordinates are in the ten
thousandth of the original image size.

See also

FineLoadImageFromFile

FineLoadImageFromInputStream

TFineImageProcessingOptionsFlags

TFineImageProcessingOptionsFlags enumeration constants are used to set the input parameter of the
FinePreprocessImage function. Some of the constants are defined using the BIT_FLAG macros.

58

ABBYY Mobile OCR Engine 4: Native Library API Reference

typedef enum tagTFineImageProcessingOptionsFlags({

FIPO Default
FIPO DisableDeskew

= 0,
= BIT FLAG(0),

FIPO DisableImageGeometricTransform = FIPO DisableDeskew,

FIPO DetectPageOrientation

= BIT FLAG(1),

FIPO HasCjk = BIT FLAG(4),
FIPO FindAllText = BIT FLAG(5),
FIPO IsEuropeanWithSomeCjk = BIT FLAG(6),
FIPO ProhibitVerticalCjkText = BIT FLAG(7),
FIPO MicrMode = BIT FLAG(8),
FIPO_BuildWordsInfo = BIT FLAG(9,

FIPO PrebuildWordsInfo
FIPO UseOldBinarization

= BIT FLAG(10),
= BIT FLAG(11)

} TFineImageProcessingOptionsFlags;

Flag

Name

Description

FIPO_BuildWordsInfo

If this flag is set, then, after recognition, the
CFineTextLine::WordInfo field stores an array of
CFineWordInfo structures with the
CFineTextLine::WordInfoCount elements.

FIPO_Default

If this constant is set, input image will be processed with
default parameters.

FIPO_DetectPageOrientation

Specifies whether the page orientation should be detected.
The portrait or landscape page orientation will be detected. If
this flag is set, the rotation parameter of the
FineRecognizeImage, FineRecognizeRegion and
FineRecognizeBusinessCard functions returns the rotation
angle multiple of 90 degrees. These functions return the
recognized text coordinates corresponding to a rotated image.

Note: Setting this flag decreases recognition speed. Also
detection of page orientation requires additional 0.5-1 MB
RAM.

FIPO_DisableDeskew

Turns off automatic skew correction.

Note: If you do not use this option, skew correction is
performed during image preprocessing. For adequate skew
correction, the skew angle should not exceed 16 degrees.

FIPO_DisableImageGeometricTransform

Equal to FIPO_DisableDeskew.

FIPO_FindAllText

If this constant is set, the program will find all text on image.
Pictures and garbage will be analyzed and recognized.

FIPO_HasCjk

Specifies whether the input image has Asian characters. This
constant is automatically added into the input parameters in
the recognition functions if the input list of the recognition
languages of these functions contains a CJK language.

FIPO_IsEuropeanWithSomeCjk

Specifies whether the input image has text that is written in
European and CJK languages. This constant is automatically
added into the input parameters in the
FineRecognizeBusinessCard function if the input list of the
recognition languages of this function contains a CJK language.

Note: Setting this constant increases recognition speed on
images which contain text written in CIJK and European
languages. If text on the image is written only in a CIK
language, it could decrease recognition quality.

FIPO_MicrMode

Specifies whether the MICR E13B font must be recognized. See

59

ABBYY Mobile OCR Engine 4: Native Library API Reference

the Recognizing in MICR Mode section for details.

Note: Only the MICR E13B characters are recognized in the
FIPO_MicrMode mode, all other fonts are ignored.

FIPO_PrebuildWordsInfo If this flag is set, the information about the document layout,
text blocks and lines is prebuilt before the text recognition. The
TFinePrebuiltDataCallbackFunction callback is called
before the text recognition, and the data argument points to a
CFinePrebuiltLayoutInfo structure.

Note: This flag is ignored if the FIPO_HasCjk flag is set.

FIPO_ProhibitVerticalCjkText If this constant is set, the program will recognize only the
horizontal CJK text on image, all vertical CIK text will be
ignored.

FIPO_UseOldBinarization If this constant is set, fast binarization mechanism will not be

used. Image binarization will be slower, but for CIK languages
recognition quality may improve.

See also

FineAnalyzeImage
FineGetTextLines
FinePrebuildWordsInfo
FinePreprocessImage
FineRecognizeBlocks
FineRecognizeBusinessCard
FineRecognizeImage
FineRecognizeRegion

TFinePrebuiltDataType

TFinePrebuiltDataType enumeration constants are used to specify the type of the data that are obtained before
the text recognition. It is used in the TFinePrebuiltDataCallbackFunction callback to specify the pointer type to
which the data argument should be cast.
typedef enum tagTFinePrebuiltDataType {

FPDT RotationType = 0,

FPDT WordsInfo =1
} TFinePrebuiltDataType;

Elements

Name Description

FPDT_RotationType | If the dataType argument of the TFinePrebuiltDataCallbackFunction callback
function is set to FPDT_RotationType, the dafa argument of that function should be
cast to the (TFineRotationType*) pointer type. If the
FIPO_DetectPageOrientation flag in the image processing options of the recognition
function is set, then the callback function with this data type delivers the detected
rotation type.

Note: If both FIPO_DetectPageOrientation and FIPO_PrebuildWordsInfo are set in
the image processing options of the recognition function, the callback function with
the FPDT_WordsInfo data type is called after the callback function with the
FPDT_RotationType data type.

FPDT_WordsInfo If the dataType argument of the TFinePrebuiltDataCallbackFunction callback
function is set to FPDT_WordsInfo, the data argument of the that function should
be cast to the (CFinePrebuiltLayoutInfo*) pointer type. If the
FIPO_PrebuildWordsInfo flag is set in the image processing options of the
recognition function, then the callback function with this data type delivers the
prebuilt information about the document layout, including the approximate
positions of the words.

60

ABBYY Mobile OCR Engine 4: Native Library API Reference

Note: If both FIPO_DetectPageOrientation and FIPO_PrebuildWordsInfo are set in
the image processing options of the recognition function, the callback function with
the FPDT_WordsInfo data type is called after the callback function with the
FPDT_RotationType data type.

See also
TFinePrebuiltDataCallbackFunction

TFineRecognitionConfidencelevel

TFineRecognitionConfidenceLevel enumeration constants are used to set the level of recognition confidence at
which the recognized characters will receive the FCA_Uncertain attribute.
typedef enum tagTFineRecognitionConfidencelevel ({

FRCL LevelO = 0,

FRCL Levell = 1,

FRCL Level2 = 2,

FRCL Level3 = 3,

FRCL Level4d = 4

} TFineRecognitionConfidencelevel;

Elements

Name Description

FRCL_Level0 No characters are marked as uncertain.

FRCL_Levell Only very uncertainly recognized characters are marked.
FRCL_Level2 Medium marking level.

FRCL_Level3 Standard uncertain characters marking level.
FRCL_Level4 All suspicious characters are marked.

See also

FineAnalyzeImage
FineRecognizeBlocks
FineRecognizeImage
FineRecognizeRegion
FineRecognizeBusinessCard

CFineTextCharacter

TFineRecognitionMode

TFineRecognitionMode enumeration constants are used to set the recognition mode.
typedef enum tagTFineRecognitionMode {

FRM Fast = 0,

FRM Full = 1
} TFineRecognitionMode;

Elements

Name Description

FRM_Fast This mode provides 25% faster recognition speed for European languages.

FRM_Full The full recognition mode.

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

FineAnalyzeImage
FineRecognizeBlocks
FineRecognizeImage
FineRecognizeRegion
FineRecognizeBusinessCard

TFineRotationType

TFineRotationType enumeration constants are used to specify the image rotation angle.
typedef enum tagTFineRotationType {

FRT NoRotation,

FRT Clockwise,

FRT UpsideDown,

FRT Counterclockwise

} TFineRotationType;

Elements

Name Description

FRT_NoRotation No rotation.

FRT_Clockwise The image is rotated by 90 degrees clockwise.
FRT_UpsideDown The image is rotated by 180 degrees.
FRT_Counterclockwise The image is rotated by 90 degrees counterclockwise.
See also

FineAnalyzeImage
TFinePrebuiltDataCallbackFunction
FineRecognizeBlocks
FineRecognizeImage
FineRecognizeRegion
FineRecognizeBusinessCard

TFineSupportedCodepage

TFineSupportedCodepage enumeration constants are used to set the barcode code page.
typedef enum tagTFineSupportedCodepage {

FSC Arabic = 1256,
FSC ArabicIso = 218596,
FSC BalticIso = 28594,
FSC Cyrillic = 1251,
FSC CyrillicIso = 28595,
FSC CyrillicKoi8 = 20866,
FSC EasternEuropean = 1250,
FSC EasternEuropeanIso = 28592,
FSC GreekIso = 28597,
FSC HebrewIso = 28598,
FSC JapanSjis = 932,
FSC Latin = 1252,
FSC Latin5Iso = 28599,
FSC LatinIso = 28591,
FSC_TurkishIso = 28593,
FSC UsMsdos = 437,
FSC Utf8 = 65001

62

ABBYY Mobile OCR Engine 4: Native Library API Reference

} TFineSupportedCodepage;

Elements
Name Description
FSC_Arabic Arabic (1256)

FSC_Arabiclso

ISO Arabic (8859-6)

FSC_BalticIso

ISO Baltic (8859-4)

FSC_Cyrillic

Windows Cyrillic (1251)

FSC_CyrillicIso

ISO Cyrillic (8859-5)

FSC_CyrillicKoi8

KOIS8 Cyrillic

FSC_EasternEuropean

Windows Central Europe (1250)

FSC_EasternEuropeanlso

ISO Central Europe (8859-2)

FSC_GreekIso

ISO Greek (8859-7)

FSC_Hebrewlso

1SO Hebrew (8859-8)

FSC_JapanSjis

Japanese (Shift-JIS)

FSC_Latin

Windows Western Europe (1252)

FSC_Latin5Iso

ISO Turkish (8859-9)

FSC_LatinIso

ISO Latin 1 (8859-1)

FSC_TurkishIso

ISO Latin 3 (8859-3)

FSC_UsMsdos

DOS United States (437)

FSC_Utf8

Unicode UTF-8

See also

FineRecognizeBarcode

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.
typedef enum tagTFineCharacterAttributes

FCA Ttalic = BIT
FCA Bold = BIT
FCA Underlined = BIT
FCA Strikethrough = BIT
FCA Smallcaps = BIT
FCA Superscript = BIT
FCA Uncertain = BIT
FCA BarcodeBinaryDataHexed = BIT .
FCA BarcodeBinaryZero = BIT_

FCA BarcodeStartStopSymbol = BIT

} TFineCharacterAttributes;

{
FLAG(0),
FLAG(1),
FLAG(2),
FLAG(3),
FLAG(4),
FLAG(5),
FLAG(16),
FLAG(17),
FLAG(18),
FLAG(19)

~

Elements

Name Description

FCA_Italic Specifies whether the character is italic.
FCA_Bold Specifies whether the character is bold.

FCA_Underlined

Specifies whether the character is underlined.

FCA_Strikethrough

Specifies whether the character is strikeout.

63

ABBYY Mobile OCR Engine 4: Native Library API Reference

FCA_Smallcaps

Specifies whether the character has the "small caps" style. This means
that the small characters are displayed as small capitals.

FCA_Superscript

Specifies whether the character is superscript.

FCA_Uncertain

Specifies whether the character has been recognized uncertainly. The
confidence level at which characters are marked as uncertain must be
set during recognition as a TFineRecognitionConfidenceLevel
constant.

FCA_BarcodeBinaryDataHexed

Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero

Specifies a zero binary symbol replaced by character that is specified in
the FineRecognizeBarcode function as unknownlLetter for correct
representation.

FCA_BarcodeStartStopSymbol

Specifies the start and stop symbols. This flag is valid for Code39 and
Codabar barcodes.

See also
CFineTextCharacter

TFineTextCharacterQuality

TFineTextCharacterQuality enumeration constants are used to set the character recognition quality.
typedef enum tagTFineTextCharacterQuality {

FTCQ Min = 0,
FTCQ Max = 100

} TFineTextCharacterQuality;

See also
CFineTextCharacter

TFineWarningCode

TFineWarningCode enumeration constants are used to describe codes of warnings which are passed through the

callback functions.

typedef enum tagTFineWarningCode ({

FWC NoWarning,
FWC SlowRecognition,
FWC ProbablyBadImage,

FWC ProbablyWrongLanguages,

FWC SureWrongLanguages

} TFineWarningCode;

Elements
Name Description
FWC_NoWarning No warning.

FWC_SlowRecognition

The recognition process takes a long time.

FWC_ProbablyBadImage

The image quality is low.

FWC_ProbablyWrongLanguages

The language of the document is likely to be different from the
recognition language you specified.

In this case a pointer to the CFineWarningDataWrongLanguages
structure with recommended recognition languages will be stored in

the warningData parameter of the TFineProgressCallbackFunction.

FWC_SureWrongLanguages

The wrong recognition language is specified.

64

ABBYY Mobile OCR Engine 4: Native Library API Reference

See also

TFineProgressCallbackFunction
TFinePrebuiltDataCallbackFunction

TFineWordAttributes

TFineWordAttributes enumeration constants are used to specify the word attributes.
enum TFineWordAttributes ({

FWA NotWord = BIT FLAG(1),
FWA SplitWord = BIT FLAG(2),
FWA HyphenatedWord = BIT FLAG(3)

}i

Elements

Name Description

FWA_NotWord Non-word part of the text such as a space, punctuation, and so on. In this case,
there should be the only one word variant with FWVT_Original type.

FWA_SplitWord A part of a long word.

FWA_HyphenatedWord | The word contains two parts separated by a new line. The word with this flag is
always the last one in the text line. You should ignore the rectangle of a word
with this attribute.

See also
CFineWordInfo

TFineWordVariantType

TFineWordVariantType enumeration constants are used to specify the type of the recognized word variant.
typedef enum tagTFineWordVariantType {

FWVT Original,

FWVT PrimaryForm
} TFineWordVariantType;

Elements

Name Description

FWVT_Original The original word as it is recognized. This variant always exists.
FWVT_PrimaryForm The primary word form.

See also

CFineWordVariant

TLanguagelD

TLanguageID enumeration constants are used in ABBYY Mobile OCR Engine for internal representation of language
ID. The name of every constant is constructed as LID_<internal language name>. See Recognition Languages in
ABBYY Mobile OCR Engine for the list of languages and their internal names.
typedef enum tagTLanguageID {

LID Undefined,

LID Afrikaans,

LID Albanian,

LID Basque,

LID Breton,

65

ABBYY Mobile OCR Engine 4: Native Library API Reference

ABBYY Mobile OCR Engine 4: Native Library API Reference

Note: Count for user languages' IDs starts from LID_FirstUserLanguagelD.

See also

Recognition Languages in ABBYY Mobile OCR Engine
FineAnalyzeImage

FineRecognizeImage

FineRecognizeRegion

67

ABBYY Mobile OCR Engine 4: Licensing

Licensing

A special protection technology is used to protect ABBYY Mobile OCR Engine from illegal copying and distribution. This
technology effectively excludes unauthorized use of ABBYY products by persons who have not signed a License
Agreement with the software copyright owner.

Developer and Runtime Licenses

ABBYY Mobile OCR Engine has two types of licenses:
 Developer License
This license grants an SDK customer the right to use ABBYY Mobile OCR Engine for development
purposes only or for internal use of the developed applications only under the terms of Software
Developer License Agreement. Developer License does not allow developers to distribute their
applications with ABBYY Mobile OCR Engine functions inside or to use the developed applications
internally.

¢ Runtime License
This license grants developers the right to distribute ABBYY Mobile OCR Engine functions inside
developer’s applications. Runtime licensing is regulated by Runtime License Agreement with ABBYY.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each 3d
recognized business card.

ABBYY Mobile OCR Engine license is stored in a license file (*.License). No operations with ABBYY Mobile OCR Engine
may be performed until a valid license is loaded.
Loading the license in native library
To add license information to an application, do the following:
1. Load the license file into memory.

2. Assign the LicenseData field of the CFineLicenselInfo structure to a pointer to the memory
buffer which contains loaded data.

3. Specify the DataLength and ApplicationID fields of the structure. The ApplicationID field
must correspond to the application name in the license file.

4. Pass a constant pointer to the CFineLicenseInfo variable to the FineSetLicenselInfo function.

Use the FineGetLicenselInfo function to get information about the current license.

Copyright and Trademark Notices

© 2013 ABBYY Production LLC. All rights reserved

This program is built on proprietary ABBYY technologies but also includes a number of third-party solutions:
Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

All other trademarks are the property of their respective owners.

Working with JPEG image format:
This software is based in part on the work of the Independent JPEG Group.

Opening DjVu image format:

Portions of this computer program are copyright © 2008 Celartem, Inc. All rights reserved.
Portions of this computer program are copyright © 2011 Caminova, Inc. All rights reserved.
Portions of this computer program are copyright © 2013 Cuminas, Inc. All rights reserved.

DjVu is protected by U.S. Patent No. 6,058,214. Foreign Patents Pending.

Powered by AT&T Labs Technology.

68

ABBYY Mobile OCR Engine 4: Licensing

Creating and manipulating processing threads:

Copyright © 2001,2006 Ross P. Johnson

All rights reserved.

Pthreads-win32 library is covered by the GNU Lesser General Public License. A copy of the License can be found
under the filename COPYING.LIB

69

ABBYY Mobile OCR Engine 4: Specifications

Specifications
This section contains the description of ABBYY Mobile OCR Engine general features and technical requirements:
e Recognition Languages
e Supported Image Formats
e Barcode Types
e System Requirements
e Backward Compatibility Issues
e ABBYY Mobile OCR Engine Distribution Kit

e What's New in ABBYY Mobile OCR Engine 4 release 14

Recognition Languages in ABBYY Mobile OCR Engine

Below is the list of internal names of the languages that are supported in ABBYY Mobile OCR Engine 4. Those
languages which have full built-in dictionary support and keywords dictionary support for business card recognition
(BCR) are marked in the table below. ABBYY Mobile OCR Engine 4 provides its own system dictionaries for the
languages that have full built-in dictionary support.

Internal name Recognition language Full dictionary Can be used
support available for for BCR

Afrikaans Afrikaans

Albanian Albanian

Basque Basque

Byelorussian Belarussian

Breton Breton

Bulgarian Bulgarian +

Catalan Catalan

Chechen Chechen

ChineseSimplified Chinese Simplified +

ChineseTraditional Chinese Traditional +

CrimeanTatar Crimean Tatar

Croatian Croatian

Czech Czech +

Danish Danish + +

Digits Digits

Dutch Dutch (Netherlands) + +

DutchBelgian Dutch (Belgium) + +

English English + +

Estonian Estonian + +

Fijian Fijian

Finnish Finnish +

French French + +

70

ABBYY Mobile OCR Engine 4: Specifications

German

German

GermanNewSpelling

German (new spelling)

Greek Greek

Hawaiian Hawaiian

Hungarian Hungarian

Icelandic Icelandic

Indonesian Indonesian

Irish Irish

Italian Italian

Japanese Japanese

Kabardian Kabardian

Korean Korean

KoreanHanja Hanja

KoreanHangul Hangul

Latin Latin

Latvian Latvian

Lithuanian Lithuanian

Macedonian Macedonian

Malay Malay

Maori Maori

Mixed English + Russian

Moldavian Moldavian

Mongol Mongol

Norwegian Norwegian (Bokmal) + Norwegian
(Nynorsk)

NorwegianBokmal Norwegian (Bokmal)

NorwegianNynorsk | Norwegian (Nynorsk)

Ossetic Ossetic

Polish Polish

Portuguese Portuguese

PortugueseBrazilian

Portuguese (Brazil)

Provencal Provencal
RhaetoRomanic Rhaeto-Romanic
Romanian Romanian
Russian Russian
Samoan Samoan
Serbian Serbian
Slovak Slovak
Slovenian Slovenian
Spanish Spanish
Swahili Swahili
Swedish Swedish
Tagalog Tagalog

71

ABBYY Mobile OCR Engine 4: Specifications

Tatar Tatar

Turkish Turkish

Ukrainian Ukrainian

Welsh Welsh

WestEuropean English + French + German + + +
Portuguese + Spanish + Italian

See also

Working with Dictionaries
Working with Languages
TLanguagelD

Supported Image Formats

The ABBYY Mobile OCR Engine library supports loading the images in the following formats:
e JPEG

e PNG

If you need to load an image in another format, you must load it into memory and convert it to the CFineImage

format before calling the library functions.
Note: The Mobile OCR Engine will not open images larger than 32512*32512 pixels.

For accurate recognition, the images must conform to certain requirements:
o the letters' size must be 2 to 20 mm, and not less than 10 pixels on image

e the best resolution for texts printed in fonts 10 pt or larger is 300 dpi

e the best resolution for texts printed in fonts 9 pt or smaller is 400-600 dpi

See also

How to Use the Native Library
Description of the Sample

Barcode Types

ABBYY Mobile OCR Engine can recognize barcodes of the following types:

Barcode Type Description

Aztec Aztec is a high density two-dimensional matrix style bar code symbology that can
encode up to 3750 characters from the entire 256 byte ASCII character set. The
symbol is built on a square grid with a bulls-eye pattern at its center.

Codabar Codabar is a self-checking, variable length barcode that can encode 16 data
characters. It is used primarily for numeric data, but also encodes six special
characters. Codabar is useful for encoding dollar and mathematical figures
because a decimal point, plus sign, and minus sign can be encoded.

Code 128 Code 128 is an alphanumeric, very high-density, compact, variable length barcode
scheme that can encode the full 128 ASCII character set. Each character is
represented by three bars and three spaces totaling 11 modules. Each bar or
space is one, two, three, or four modules wide with the total number of modules
representing bars an even number and the total number of modules representing
a space an odd number. Three different start characters are used to select one of

72

ABBYY Mobile OCR Engine 4: Specifications

three character sets.

Code 39 Code 39, also referred to as Code 3 of 9, is an alphanumeric, self-checking,
variable length barcode that uses five black bars and four spaces to define a
character. Three of the elements are wide and six are narrow.

Code 93 Code 93 is a variable length bar code that encodes 47 characters. It is named

Code 93 because every character is constructed from nine elements arranged into
three bars with their adjacent spaces. Code 93 is a compressed version of Code 39
and was designed to complement Code 39.

Data Matrix

Data Matrix is a two-dimensional matrix barcode consisting of black and white
modules arranged in either a square or rectangular pattern. Every Data Matrix is
composed of two solid adjacent borders in an "L" shape and two other borders
consisting of alternating dark and light modules. Within these borders are rows
and columns of cells encoding information. A Data Matrix barcode can store up to
2335 alphanumeric characters.

EAN 8 and 13

The European Article Numbering (EAN) system is used for products that require a
country origin. This is a fixed-length barcode used to encode either eight or
thirteen characters. The first two characters identify the country of origin, the next
characters are data characters, and the last character is the checksum. These
barcodes may include an additional barcode to the right of the main barcode. This
second barcode, which is usually not as tall as the primary barcode, is used to
encode additional information for newspapers, books, and other periodicals. The
supplemental barcode may either encoded 2 or 5 digits of information.

GS1-128

This type of barcode is a 19 digit barcode with a 20th check digit. For a total of 20
digits. It typically is used for carton identification. Both for internal carton
numbering and also for using the GS1-128 barcode on your cartons being shipped
out to your customers. The former name was UCC-128.

IATA 2 of 5

IATA 2 of 5 is a barcode standard designed by the IATA (International Air
Transport Association). This standard is used for all boarding passes.

Industrial 2 of 5

Industrial 2 of 5 is numeric-only barcode that has been in use a long time. Unlike
Interleaved 2 of 5, all of the information is encoded in the bars; the spaces are
fixed width and are used only to separate the bars. The code is self-checking and
does not include a checksum.

Interleaved 2 of 5

Interleaved 2 of 5 is a variable length (must be a multiple of two), high-density,
self-checking, numeric barcode that uses five black bars and five white bars to
define a character. Two digits are encoded in every character; one in the black
bars and one in the white bars. Two of the black bars and two of the white bars
are wide. The other bars are narrow.

Matrix 2 of 5

Standard 2 of 5 is self-checking numeric-only barcode. Unlike Interleaved 2 of 5,
all of the information is encoded in the bars; the spaces are fixed width and are
used only to separate the bars. Matrix 2 of 5 is used primarily for warehouse
sorting, photo finishing, and airline ticket marking.

MaxiCode

MaxiCode is two-dimensional machine-readable code that uses dots arranged in a
hexagonal grid. It is usually one inch square that can store around one hundred
characters of information and usually used for tracking and managing the
shipment of packages.

Patch

A pattern of horizontal black bars separated by spaces. Typically, a patch code is
placed near the top center of a paper document to be scanned and used as a
document separator.

PDF417

PDF417 is a variable length, two-dimensional (2D), stacked symbology that can
store up to 1,850 printable ASCII characters or 1,100 binary characters per
symbol. PDF417 is designed with selectable levels of error correction. Its high data
capacity can be helpful in applications where a large amount of data must travel
with a labeled document or item.

PostNet

The Postnet (Postal Numeric Encoding Technique) is a fixed length symbology (5,

73

ABBYY Mobile OCR Engine 4: Specifications

6, 9, or 11 characters) which uses constant bar and space width. Information is

encoded by varying the bar height between the two values. Postnet barcodes are
placed on the lower right of envelopes or postcards, and are used to expedite the
processing of mail with automatic equipment and provide reduced postage rates.

QR Code QR Code is a two-dimensional matrix barcode. The barcode has 3 large squares
(registration marks) in the corners which define the top of the barcode. The black
and white squares in the area between the registration marks are the encoded
data and error correction keys. QR Codes can encode over 4000 ASCII characters.

UPC-A The UPC-A (Universal Product Code) barcode is 12 digits long, including its
checksum. Each digit is represented by a seven-bit sequence, encoded by a series
of alternating bars and spaces. UPC-A is used for marking products which are sold
at retail in the USA.

UPC-E The Universal Product Code (UPC) compresses the data characters and the
checksum into six characters. Only tags with a number system character of zero
can be encoded into UPC-E. In addition, the original ten data characters must have
at least four zeros. This bar code is ideal for small packages because it is the
smallest bar code.

See also

TFineBarcodeType
FineRecognizeBarcode

System Requirements

Supported Operating Systems
The Mobile OCR Engine supports Win32.

ABBYY offers professional services to port the software to other platforms and to customize the software for special
tasks.

The ABBYY Mobile OCR Engine native library may be used for testing. The ABBYY Mobile OCR Engine library supplied
as DLL and as static library and as a wrapper of the library for Android and iOS may be found in the appropriate
distributions.

Backward Compatibility Issues of ABBYY Mobile OCR Engine

This section contains the descriptions of compatibility issues:
e Compatibility with previous releases of version 4

e Compatibility with version 3.0 or older

Compatibility of ABBYY Mobile OCR Engine 4 release 14 with previous releases

Different builds of ABBYY Mobile OCR Engine are not binary compatible. Applications that were compiled using earlier
builds of ABBYY Mobile OCR Engine should be recompiled. Some changes in the source code may be necessary
because of the improvements in the APIL In the table below you can find the API changes introduced in the different
builds.

Build | Changes Required code modifications

#

4.0 The rotation property was removed from the Remove all mentions of the rotation property
ri2 FineRecognizeBlocks method. of the FineRecognizeBlocks method.

74

ABBYY Mobile OCR Engine 4: Specifications

4.0
rio

ABBYY Mobile OCR Engine does not support the
Symbian, WinCE, and WinMobile operating systems.

The Symbian, WinCE, and WinMobile
operating systems are no longer supported.

The Yiddish recognition language is not supported
any longer.

Remove the Yiddish language from the list of
the recognition languages.

The TCallbackFunction function has been replaced
by TFineProgressCallbackFunction.

Replace the TCallbackFunction function by
TFineProgressCallbackFunction.

The following types have been deprecated:

PFINE_ANGLE

PFINE_BARCODE

PFINE_BCR_FIELD
PFINE_BUSINESS_CARD
PFINE_FIELD_COMPONENT
PFINE_IMAGE
PFINE_IMAGE_TRANSFORMATION_INFO
PFINE_LAYOUT

PFINE_LICENSE_INFO

PFINE_RECTS

PFINE_TEXT_BLOCK
PFINE_TEXT_CHARACTER
PFINE_TEXT_LINE
PFINE_WARNING_DATA_WRONG_LANGUAGE
PFINE_WORD_SUGGESTION

Replace the PFINE_* types to the
corresponding pointers.

The constants of the TFineBarcodeSupplement
enumeration have been renamed.

Rename the TFineBarcodeSupplement
enumeration constants as follows:

FBS_VOID = FBS_Void,

FBS_2DIGIT = FBS_2Digit,
FBS_5DIGIT = FBS_5Digit,
FBS_AUTODETECT = FBS_AutoDetect,
FBS_ANY_SUPPLEMENT =
FBS_AnySupplement

The constants of the TFineBarcodeOrientation
enumeration have been renamed.

Rename the TFineBarcodeOrientation
enumeration constants as follows:

FBO_LEFT_TO_RIGHT = FBO_LeftToRight,
FBO_DOWN_TO_TOP = FBO_DownToTop,
FBO_RIGHT_TO_LEFT = FBO_RightToLetft,
FBO_TOP_TO_DOWN = FBO_TopToDown,
FBO_AUTODETECT = FBO_AutoDetect

The constants of the TFineBarcodeType
enumeration have been renamed.

Rename the TFineBarcodeType
enumeration constants as follows:

FBT_UNRECOGNIZED = FBT_Unrecognized
FBT_CODE39 = FBT_Code39
FBT_INTERLEAVED25 = FBT_Interleaved25
FBT_EAN13 = FBT_Ean13

FBT_CODE128 = FBT_Code128

FBT_EAN8 = FBT_Ean8

FBT_PDF417 = FBT_Pdf417
FBT_CODABAR = FBT_Codabar

FBT_UPCE = FBT_Upce
FBT_INDUSTRIAL25 = FBT_Industrial25
FBT_IATA25 = FBT_Iata25
FBT_MATRIX25 = FBT_Matrix25
FBT_CODE93 = FBT_Code93
FBT_POSTNET = FBT_Postnet
FBT_UCC128 = FBT_Ucc128

FBT_PATCH = FBT_Patch

75

ABBYY Mobile OCR Engine 4: Specifications

FBT_AZTEC = FBT_Aztec
FBT_DATAMATRIX = FBT_Datamatrix
FBT_QRCODE = FBT_Qrcode
FBT_UPCA = FBT_Upca
FBT_MAXICODE = FBT_Maxicode
FBT_ANY1D = FBT_Any1D
FBT_SQUARE2D = FBT_Square2D
FBT_ANY1D_WITH_SUPPLEMENT =
FBT_Any1DWithSupplement

The TRecognitionConfidenceLevel enumeration
and its constants have been renamed.

Rename the TRecognitionConfidenceLevel
enumeration to
TFineRecognitionConfidencelLevel and its
constants as follows:

RCL_Level0 = FRCL_LevelO,
RCL_Levell = FRCL_Levell,
RCL_Level2 = FRCL_Level2,
RCL_Level3 = FRCL_Level3,
RCL_Level4 = FRCL_Level4

The TRecognitionMode enumeration and its
constants have been renamed.

Rename the TRecognitionMode
enumeration to TFineRecognitionMode and
its constants as follows:

RM_Fast = FRM_Fast,
RM_Full = FRM_Full

The PFINE_PATTERNS , PFINE_DICTIONARY, and
PFINE_KEYWORDS types have been replaced by
TFinePatternsPtr, TFineDictionaryPtr, and
TFineKeywordsPtr, respectively.

Replace the variables of the
PFINE_PATTERNS, PFINE_DICTIONARY,
and PFINE_KEYWORDS types by
TFinePatternsPtr, TFineDictionaryPtr,
and TFineKeywordsPtr, respectively. See
Types in ABBYY Mobile OCR Engine Native
Library for details.

The FINE_ATTR_ prefixed flags has been replaced
by the TFineCharacterAttributes enumeration.

Replace all FINE_ATTR_ prefixed flags by the
TFineCharacterAttributes enumeration
constants as follows:

FINE_ATTR_ITALIC = FCA_TItalic,
FINE_ATTR_BOLD = FCA_Bold,
FINE_ATTR_UNDERLINED = FCA_Underlined,
FINE_ATTR_STRIKETHROUGH =
FCA_Strikethrough,

FINE_ATTR_SMALLCAPS = FCA_Smallcaps,
FINE_ATTR_SUPERSCRIPT =
FCA_Superscript,

FINE_ATTR_UNCERTAIN = FCA_Uncertain,
FINE_ATTR_BARCODE_BINARY_DATA_HEXED
= FCA_BarcodeBinaryDataHexed,
FINE_ATTR_BARCODE_BINARY_ZERO =
FCA_BarcodeBinaryZero,
FINE_ATTR_BARCODE_START_STOP_SYMBOL
= FCA_BarcodeStartStopSymbol

The TFineImageProcessingOptions, TBCRFieldType,
TBCRComponentType, FINE_ WARNING_CODE
enumerations have been renamed to
TFineImageProcessingOptionsFlags, TBcrFieldType,
TBcrComponentType, and TFineWarningCode,
respectively.

Rename the TFineImageProcessingOptions,,
TBCRFieldType, TBCRComponentType,
FINE_WARNING_CODE enumerations to
TFineImageProcessingOptionsFlags,
TBcrFieldType, TBcrComponentType, and
TFineWarningCode, respectively.

The FINE_ANGLE, FINE_BARCODE,
FINE_BCR_FIELD, FINE_BUSINESS_CARD,

Replace variables of the FINE_ANGLE,
FINE_BARCODE, FINE_BCR_FIELD,

76

ABBYY Mobile OCR Engine 4: Specifications

FINE_FIELD_COMPONENT, FINE_IMAGE,
FINE_IMAGE_TRANSFORMATION_INFO,
FINE_LAYOUT, FINE_LICENSE_INFO, FINE_RECTS,
FINE_TEXT_BLOCK, FINE_TEXT_CHARACTER,
FINE_TEXT_LINE,
FINE_WARNING_DATA_WRONG_LANGUAGE, and
FINE_WORD_SUGGESTION structures have been
replaced by CFineAngle, CFineBarcode,
CFineBcrField, CFineBusinessCard,
CFineBcrFieldComponent, CFineImage,
CFineImageTransformationInfo, CFineLayout,
CFineLicenselnfo, CFineRects, CFineTextBlock,
CFineTextCharacter, CFineTextLine,
CFineWarningDataWrongLanguages, and
CFineWordSuggestion, respectively.

FINE_BUSINESS_CARD,
FINE_FIELD_COMPONENT, FINE_IMAGE,
FINE_IMAGE_TRANSFORMATION_INFO,
FINE_LAYOUT, FINE_LICENSE_INFO,
FINE_RECTS, FINE_TEXT_BLOCK,
FINE_TEXT_CHARACTER, FINE_TEXT_LINE,
FINE_WARNING_DATA_WRONG_LANGUAGE,
and FINE_WORD_SUGGESTION types by
CFineAngle, CFineBarcode, CFineBcrField,
CFineBusinessCard, CFineBcrFieldComponent,
CFinelmage, CFineImageTransformationlInfo,
CFineLayout, CFineLicenselnfo, CFineRects,
CFineTextBlock, CFineTextCharacter,
CFineTextLine,
CFineWarningDataWrongLanguages, and
CFineWordSuggestion, respectively.

The FINE_ERROR_CODE enumeration and its
constants have been renamed.

Rename the FINE_ERROR_CODE
enumeration to TFineErrorCode and its
constants as follows:

FINE_ERR_NO_ERROR = FEC_NoError,
FINE_ERR_NOT_INITIALIZED =
FEC_NotlInitialized,
FINE_ERR_LICENSE_ERROR =
FEC_LicenseError,
FINE_ERR_INVALID_ARGUMENT =
FEC_InvalidArgument,
FINE_ERR_NOT_ENOUGH_MEMORY =
FEC_NotEnoughMemory,
FINE_ERR_INTERNAL_FAILURE =
FEC_InternalFailure,
FINE_ERR_TERMINATED_BY_CALLBACK =
FEC_TerminatedByCallback

The FINE_CUSTOMER_KEY and
FINE_WARN_WRONG_LANG structures have
been removed.

Remove variables of the
FINE_CUSTOMER_KEY and
FINE_WARN_WRONG_LANG types.

4.0 The TrialKey.h file has been deleted. The trial Delete the TrialKey.h file from the included
r7 license is stored in the /License/Sample.license file. | files, load the license file to the memory, and
pass loaded information to ABBYY Mobile OCR
Engine library. See Licensing section for
details.
4.0 The BCT_AddressClarification and Use the BCT_StreetAddress constant instead
r5 BCT_AddressUnclassifiedPart constants have been of BCT_AddressClarification and
removed from the TBcrComponentType BCT_AddressUnclassifiedPart. Rename the
enumeration, and the BCT_State constant has been | BCT_State constant.
renamed to BCT_Region.
4.0 The ability to detect the page orientation has been Add 0 as the rotation parameter in all calls of
r2 added (the FIPO_DetectPageOrientation constant of | the FineRecognizeImage,
the TFineImageProcessingOptions FineRecognizeRegion and
enumeration). Due to this change the rotation FineRecognizeBusinessCard functions.
parameter has been added in the
FineRecognizeImage, FineRecognizeRegion
and FineRecognizeBusinessCard functions.
4.0.1 | The licensing of ABBYY Mobile OCR Engine has Add license information with the help of the

been changed. A customer key provides access to
certain functionality of ABBYY Mobile OCR Engine. A
user can have a set of keys representing necessary

FineSetLicenselInfo function.

77

ABBYY Mobile OCR Engine 4: Specifications

functionality. The FineSetLicenseInfo function
has been created for adding license information.
You have to call the FineSetLicenseInfo function
for your license after calling of the FineInitialize
function.

4.0

The AllDictionaryLanguages.rom and
AllLanguages.rom files have been removed. The
European.rom file must be used instead.

Load the European.rom file instead of the
AlIDictionaryLanguages.rom and
AllLanguages.rom files.

The Quality field has been added

into CFineTextCharacter structure. The
FIPO_SkipDictionaryUncertainty flag has been
removed from the
TFineImageProcessingOptions set.

Use the value of the Quality field instead of
the FIPO_SkipDictionaryUncertainty flag.

The definition of the BFT_Text field has been
changed. Now the recognized text is stored in this
field.

If you want to get text fragments from the
field of the BFT_Text type, which is not stored
in another field, you can remove text
fragments stored in another field using
information about character rectangles.

The CIK languages (Chinese Simplified, Chinese
Traditional, Japanese, and Korean) are now
available for recognition. The cjkPatterns parameter
has been added into FineRecognizeImage,
FineRecognizeRegion,
FineRecognizeBusinessCard functions. This
parameter contains the zero-terminated list of
pointers to the patterns for CJK languages. It must
not be null and must contain valid patterns, if one
of these languages is specified in the /anguages
parameter.

Notes:

e The Chineselapanese.rom file must be
specified in the cjkPatterns parameter for
recognition of text in Chinese or Japanese
language.

e Both the ChineseJapanese.rom and
KoreanSpecific.rom files must be
specified in the cjkPatterns parameter for
recognition of text in Korean language.

Pass 0 as cjkPatterns parameter in the
recognition functions, if the code does not
perform recognition of texts in CIK languages.

Compatibility of ABBYY Mobile OCR Engine with version 3.0 and older

Different builds of ABBYY Mobile OCR Engine are not binary compatible. Applications that were compiled using earlier

builds of ABBYY Mobile OCR Engine should be recompiled. Some changes in the source code may be necessary

because of the improvements in the APIL In the table below you can find the API changes introduced in the different

builds.

Build | Changes Required code modifications

#

3.0 The TrialKey.h file has been removed. You have to use the serial number from our
r4 re-sellers.

3.0 The format of Redefine your callback function and warning
r3 TFineProgressCallbackFunction has been handling. Here is a sample implementation:

changed:
e The warning parameter is a

int TFineProgressCallbackFunction (

78

ABBYY Mobile OCR Engine 4: Specifications

TFineWarningCode constant
instead of a combination.

e The new warningData parameter has
been added. It depends on the value
of the warning parameter. If the
warning parameter is
FWC_ProbablyWrongLanguages, the
warningData parameter gets a
pointer to a structure which should
be cast to the
CFineWarningDataWronglLanguag
es type. For other constants of the
TFineWarningCode enumerations,
this parameter does not make sense
and should be ignored.

int processedPercentage,
DWORD warning,
void* warningData)

{

fprintf(TraceFile, "%d%% of the
work is done.\n",
processedPercentage) ;

if (warning ==
FWC ProbablyBadImage) {

fprintf(TraceFile, "The image
quality is too low.\n");

}
if (processedPercentage < 50

&& (warning ==
FWC SlowRecognition) != 0)

{
return 0;
} else {
return 1;
}
}

2.0

The FinePreprocessImage function returns
the angle by which the image skew was
corrected.

Add to the FinePreprocessImage call the
transformationInfo argument. If
FinePreprocessImage completes
successfully, free up transformationinfo using
the FineFreeMemory function.

Simple types (BYTE, etc.) are now defined
through conditional compilation.

No changes are required.

e TFineImagePreprocessingMode
enumeration was renamed to
TFineImageProcessingOptions
enumeration.

e All functions that work with images
(FinePreprocessImage,
FineRecognizeBusinessCard,
FineGetTextLines,
FineRecognizeImage, and
FineRecognizeRegion) now have an
argument of type
TFineImageProcessingOptions.

Pass the FIPO_Default value to the
corresponding functions for the same
behavior.

Client code may obtain debug information via a
callback function of type
FineExecutionLogFunction.

Pass 0 for the executionLogFunction argument
of the Finelnitialize function if you do not
need to receive information about the
processing.

The FineBinarizeImage function has been
removed.

Use the FinePreprocessImage function.

The FineRecognizeImage and
FineRecognizeRegion image recognition
functions return information about the text
blocks instead of the list of lines. Now these
functions return the CFineLayout structure,
which contains an array of blocks
(CFineTextBlock), each of which in turn
contains an array of lines CFineTextLine.

To iterate through all the lines of a recognized
text, you need to iterate through all the
blocks.

79

ABBYY Mobile OCR Engine 4: Specifications

Changes were made to memory allocation.
Previously, pre-allocated memory blocks were
passed to API functions. The API functions
worked with these blocks and issued the results
via these blocks. Now, when a library is
initialized, pointers to the memory allocation
and release functions are passed to the
FinelInitialize function, and the library uses
these pointers to work with the memory.
Memory for the results returned by an API
function is allocated inside this function. The
client code must free up this memory using
the FineFreeMemory function.

e For any platforms other than those
identified above, define two
functions of types
TFineAllocMemoryFunction and
TFineFreeMemoryFunction and pass
their pointers to Finelnitialize. In
addition, you can pass pointers to
system functions malloc and free as
these arguments.

e Delete the ram and ramSize
arguments in your API functions.

¢ You don't need to handle the error
FINE_ERR_OUTPUT_BUFF_TOO_SMA
LL, as buffers for output results are
now allocated inside API functions
and not in client code.

e Change the way you work with
output data produced by API
functions. After using the output
buffer you have to free it up using
the FineFreeMemory function.

The FINE_ATTR_CERTAIN_SPACE flag was
removed.

The confidence for a space, just like
confidences for other characters, should be
determined via the FCA_Uncertain flag of the
TFineCharacterAttributes enumeration.

The confidencelLevel argument was added to
the recognition functions.

In the FineRecognizeImage and
FineRecognizeRegion recognition functions,
pass the FRCL_Level3 value as the
confidencelevel argument.

A special WestEuropean language was
introduced to speed up OCR that involves
multiple European languages. The
WestEuropean language combines English,
French, German, Portuguese, Spanish, and
Italian.

No changes are required.

The CFineBcrField structure no longer
contains a property describing the region of a
field on the image. A region is a list of
coordinates of the rectangles that enclose the
field.

The region of a field can now be obtained by
merging the rectangles from the
CFineTextLine::Rect property which enclose
the field lines.

In the CFineBcrField structure, in the
TextLines property, the text of a field is now
written not as a WCHAR string, but as an array
of CFineTextLine lines.

To get the text of a field:
e terate the values of the Chars

property of the CFineTextLine
structure.

e get the value of
CFineTextCharacter::Unicode
from each element of the Chars
property.

In the TBcrFieldType enumeration, the
BFT_Max constant was renamed to BFT_Count.

Rename BFT_Max to BFT_Count.

80

ABBYY Mobile OCR Engine 4: Specifications

ABBYY Mobile OCR Engine Distribution Kit

The ABBYY Mobile OCR Engine library supplied as a static library and as a wrapper of the library for Android and iOS
may be found in the appropriate distributions.

This section contains a list of all files you will find in the distribution package for testing of the recognizing quality and
describes the function of each file.

The list of files supplied in different ABBYY Mobile OCR Engine distribution kits may not be the same as in the list
below and may vary depending on the product’s version.

You can use the ABBYY Mobile OCR Engine native library for testing (Native Library API Reference). All the resources
you will find in the TestShell folder. Select the necessary files, depending on functionality and recognition languages

you intend to work with.

Folder File name Description
lib\ MobileOcrEngine.dll, These files are necessary to run the
MobileOcrEngine.lib applications which use ABBYY Mobile OCR
Engine on desktop computers, e.g. for
quality testing purposes.
pthreadVC2.dll This is a file for multi-threaded processing
with ABBYY Mobile OCR Engine.
COPYING Pthreads-win32 license.
COPYING.LIB GNU Lesser General Public License.
TestShell\BcrData Brazil.akw Portuguese (Brazilian) language support for

business card recognition.

ChineseSimplified.akw

Chinese (PRC) language support for business
card recognition.

ChineseTraditional.akw

Chinese (Taiwan) language support for
business card recognition.

Czech.akw Czech language support for business card
recognition.

Danish.akw Danish language support for business card
recognition.

Dutch.akw Dutch language support for business card
recognition.

English.akw English language support for business card
recognition.

Eston.akw Estonian language support for business card
recognition.

Finnish.akw Finnish language support for business card
recognition.

French.akw French language support for business card
recognition.

German.akw German language support for business card
recognition.

Greek.akw Greek language support for business card

recognition.

Indones.akw

Indonesian language support for business
card recognition.

Italian.akw

Italian language support for business card
recognition.

Japanese.akw

Japanese language support for business card
recognition.

81

ABBYY Mobile OCR Engine 4: Specifications

Korean.akw Korean language support for business card
recognition.
NorwBok.akw Norwegian (Bokmal) language support for

business card recognition.

NorwNyn.akw

Norwegian (Nynorsk) language support for
business card recognition.

Polish.akw Polish language support for business card
recognition.

Portug.akw Portuguese language support for business
card recognition.

Russian.akw Russian language support for business card
recognition.

Spanish.akw Spanish language support for business card
recognition.

Swedish.akw Swedish language support for business card
recognition.

Turkish.akw Turkish language support for business card
recognition.

Ukrain.akw Ukrainian language support for business

card recognition.

WestEuropean.akw

West European (English, French, German,
Portuguese, Spanish, Italian) languages set
support for business card recognition.

TestShell\Dictionaries

Brazil.edc Portuguese (Brazilian) language dictionary
support.
Bulgar.edc Bulgarian language dictionary support.
Czech.edc Czech language dictionary support.
Danish.edc Danish language dictionary support.
Dutch.edc Dutch language dictionary support.
English.edc English language dictionary support.
Eston.edc Estonian language dictionary support.
Finnish.edc Finnish language dictionary support.
Flemmish.edc Dutch (Belgium) language dictionary
support.
French.edc French language dictionary support.
German.edc German language dictionary support.

GermanNS.edc

German (new spelling) language dictionary
support.

Greek.edc

Greek language dictionary support.

Indones.edc

Indonesian language dictionary support.

Italian.edc

Italian language dictionary support.

NorwBok.edc

Norwegian (Bokmal) language dictionary
support.

NorwNyn.edc

Norwegian (Nynorsk) language dictionary
support.

Polish.edc

Polish language dictionary support.

Portug.edc

Portuguese language dictionary support.

82

ABBYY Mobile OCR Engine 4: Specifications

Russian.edc Russian language dictionary support.
Spanish.edc Spanish language dictionary support.
Swedish.edc Swedish language dictionary support.
Turkish.edc Turkish language dictionary support.
Ukrain.edc Ukrainian language dictionary support.

WestEuropean.edc

West European (English, French, German,
Portuguese, Spanish, Italian) languages set
dictionary support.

TestShell\Dictionaries \Full

This folder contains larger and more
comprehensive dictionaries for the same
languages. You can substitute any of them
for the files of the same name in the
TestShell\Dictionaries folder, if the size
issue is unimportant for you.

TestShell\Patterns ChineseJapanese.rom Recognition database for Chinese, Japanese
and Korean languages.
KoreanHanja.rom Recognition database for Korean (Hanja)
language.
KoreanSpecificBCR.rom Recognition database for recognizing
business cards in Korean language.
KoreanSpecific.rom Recognition database for Korean language.
European.rom Recognition database for all supported
recognition languages except Chinese,
Japanese and Korean.
Micr.rom Recognition database for Magnetic Ink
Character Recognition (MICR) mode.
PatternsFilesInfo.txt This file contains the information about
which patterns file can be used for
recognizing which languages.
See also

List of the Recognition Languages in ABBYY Mobile OCR Engine

What's New in ABBYY Mobile OCR Engine 4 release 15

Here you can find the list of new features in ABBYY Mobile OCR Engine 4 release 15.

e Bugs fixed.

83

ABBYY Mobile OCR Engine 4: Contact ABBYY

Contact ABBYY

In this section you can find the contacts of ABBYY sales offices and technical support:
e How to Buy

e Technical Support

How to Buy ABBYY Mobile OCR Engine 4

You can order ABBYY Mobile OCR Engine 4 by contacting our offices at the following addresses:
e ABBYY Russia: engine@abbyy.com

e ABBYY USA: sales@abbyyusa.com
e ABBYY Europe: engine_eu@abbyy.com

e ABBYY Ukraine: engine@abbyy.ua

Technical Support

If you have any questions regarding the use of ABBYY Mobile OCR Engine 4, first of all consult this Developer's Help.
Useful information can also be found in our Knowledge Base.

If you cannot find the answer to your question, please contact the ABBYY office serving your region by e-mail. Please
provide the following information when contacting technical support:
e your first and last name

the name of your organization
e your phone number (or fax, or e-mail)

e the build number (to determine the build number, see the BuildInfo.txt file in the Help folder of the
distribution package)

e a description of the problem

e a project that demonstrates the problem (with the necessary data files). We recommend that you
compress the files using any popular archiving program (WinZIP, WinRAR, etc.)

e the name of your development tool

e the type of your computer and processor

the type of operating system

You can also provide any additional information you consider important.

Support contacts

North/Central Customers from USA, Canada, Japan, Mexico or other Central American
Americas countries, please contact ABBYY USA at dev_support@abbyyusa.com
Western Europe Customers from Austria, Benelux, Denmark, France, Germany, Greece, Italy,

Ireland, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom or
other Western European countries, please contact ABBYY Europe GmbH at
TechSupport_eu@abbyy.com

84

ABBYY Mobile OCR Engine 4: Contact ABBYY

Eastern Europe and
the Mediterranean

Customers from Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech
Republic, Hungary, Israel, Macedonia, Moldova, Montenegro, Poland, Romania,
Serbia, Slovakia, Slovenia, Turkey or Ukraine, please contact ABBYY Ukraine at
engine_support@abbyy.ua

All other regions

Customers from the countries not mentioned above, please contact ABBYY
Russia at SDK_Support@abbyy.com

85

	G:\MobileOCR\Help\Tools.Windows\MobileOCREngine4UserGuide_title.pdf
	G:\resultWindows.pdf

