

USER’S GUIDE

ABBYY Mobile OCR Engine 4: Table of Contents

 1

Table of Contents

Introducing ABBYY Mobile OCR Engine 4 .. 5

Guided Tour .. 6

How to Use the ABBYY Mobile OCR Engine Native Library ... 6

Recognizing Business Cards ... 9

Working with Languages ... 9

Working with Dictionaries ... 10

Recognizing with Custom Languages ... 11

Working with Regular Expressions ... 11

Recognizing in MICR Mode ... 13

Description of the ABBYY Mobile OCR Engine Native Sample .. 13

Description of the Demo Tool ... 14

Recognition Settings Dialog Box .. 15

Tips for Taking Photos ... 17

Native Library API Reference .. 20

Types in ABBYY Mobile OCR Engine Native Library .. 20

Standard Return Codes of ABBYY Mobile OCR Engine Functions ... 21

List of the ABBYY Mobile OCR Engine Functions .. 21

FineAllocMemory Function .. 22

FineAnalyzeTextAsBusinessCard Function ... 23

FineAreCjkLanguagesSupported Function ... 23

FineDeinitialize Function ... 23

FineExecutionLogFunction Function ... 24

FineExtractBarcodes Function ... 24

FineFreeMemory Function... 25

FineGetLastErrorMessage Function .. 25

FineGetLicenseInfo Function ... 26

FineGetTextLines Function .. 26

FineGetVersionInfo Function ... 27

FineGetWordSuggest Function .. 27

FineInitialize Function .. 28

FineLoadImageFromFile Function .. 28

FineLoadImageFromInputStream Function ... 29

FinePrebuildWordsInfo Function .. 30

FinePreprocessImage Function .. 30

FineRecognizeBarcode Function .. 31

FineRecognizeBusinessCard Function ... 32

FineRecognizeImage Function ... 34

FineRecognizeRegion Function .. 35

FineSetLicenseInfo Function ... 36

FineSetRecognizerThreadsCount Function .. 37

Callback Functions ... 37

TFinePrebuiltDataCallbackFunction .. 37

TFineProgressCallbackFunction ... 38

ABBYY Mobile OCR Engine 4: Table of Contents

 2

Custom Memory Management Functions .. 39

TFineAllocMemoryFunction Function .. 39

TFineFreeMemoryFunction Function ... 39

Structures .. 40

CFineAngle Structure ... 40

CFineBarcode Structure .. 41

CFineBcrField Structure .. 41

CFineBusinessCard Structure... 42

CFineBusinessCard Structure... 42

CFineImage Structure .. 42

CFineImageFile Structure ... 43

GetLength Method of CFineImageFile Structure .. 43

Read Method of CFineImageFile Structure .. 44

Seek Method of CFineImageFile Structure .. 44

CFineImageInputStream Structure... 45

Read Method of CFineImageInputStream Structure ... 45

Skip Method of CFineImageInputStream Structure .. 45

CFineImageTransformationInfo Structure ... 46

CFineLayout Structure .. 46

CFineLicenseInfo Structure ... 47

CFinePrebuiltLayoutInfo Structure ... 47

CFinePrebuiltTextBlockInfo Structure ... 48

CFinePrebuiltTextLineInfo Structure ... 48

CFineRects Structure.. 48

CFineTextBlock Structure.. 49

CFineTextCharacter Structure ... 49

CFineTextLine Structure ... 50

CFineWarningDataWrongLanguages Structure .. 50

CFineWordInfo Structure .. 51

CFineWordSuggestion Structure .. 51

CFineWordVariant Structure .. 52

Enumerations ... 52

BIT_FLAG Macros .. 53

TFineCharacterAttributes .. 53

TBcrFieldType ... 54

TFineBarcodeOrientation .. 55

TFineBarcodeSupplement ... 55

TFineBarcodeType ... 56

TFineCharacterAttributes .. 57

TFineImageFileSeekPosition .. 58

TFineImageLoadingOptionsFlags ... 58

TFineImageProcessingOptionsFlags ... 58

TFinePrebuiltDataType ... 60

TFineRecognitionConfidenceLevel .. 61

TFineRecognitionMode ... 61

TFineRotationType... 62

TFineSupportedCodepage ... 62

ABBYY Mobile OCR Engine 4: Table of Contents

 3

TFineCharacterAttributes .. 63

TFineTextCharacterQuality.. 64

TFineWarningCode .. 64

TFineWordAttributes .. 65

TFineWordVariantType ... 65

TLanguageID .. 65

Licensing... 68

Copyright and Trademark Notices ... 68

Specifications ... 70

Recognition Languages in ABBYY Mobile OCR Engine .. 70

Supported Image Formats .. 72

Barcode Types .. 72

System Requirements .. 74

Backward Compatibility Issues of ABBYY Mobile OCR Engine .. 74

Compatibility of ABBYY Mobile OCR Engine 4 release 14 with previous releases 74

Compatibility of ABBYY Mobile OCR Engine with version 3.0 and older 78

ABBYY Mobile OCR Engine Distribution Kit .. 81

What's New in ABBYY Mobile OCR Engine 4 release 15 .. 83

Contact ABBYY .. 84

How to Buy ABBYY Mobile OCR Engine 4 ... 84

Technical Support ... 84

ABBYY Mobile OCR Engine 4: Table of Contents

 4

ABBYY Mobile OCR Engine 4: Introducing ABBYY Mobile OCR Engine 4

 5

Introducing ABBYY Mobile OCR Engine 4

Use ABBYY Mobile OCR Engine 4 to develop fast, light and compact OCR applications for mobile devices. Based on

ABBYY’s world-famous cutting-edge OCR technologies, ABBYY Mobile OCR Engine 4 provides powerful algorithms for

image processing and high-accuracy recognition and is optimized to provide high efficiency combined with low

requirements for device resources:
• Upgraded memory management: optimal balance of speed and quality

• Compact code: it occupies from 8 MB of ROM and from 10 MB of RAM

• OCR technologies famous worldwide

• 62 recognition languages including Chinese, Japanese, and Korean

• Reliable development tool

ABBYY Mobile OCR Engine 4 is the ideal solution for developers of mobile and “light” applications that strive to

increase the attractiveness of their products, upgrade and expand their functionality and application areas. ABBYY

Mobile OCR Engine 4 is a leader among the technological products for developing applications for mobile devices.

Key features
• High quality and accuracy of recognition

• Recognition of multilingual documents

• Business card reading

• Barcode recognition

• Integration with popular mobile platforms

• Low resource requirements

This distribution provides you a possibility to test these features of ABBYY Mobile OCR Engine 4 using a special Demo

Tool utility (TestShell.exe) and ABBYY Mobile OCR Engine 4 native library.

How to use this Help

In this Developer's Help you can find all the necessary information about testing ABBYY Mobile OCR Engine 4.

Guided Tour

See this section for quick-start instructions and articles about using different aspects of ABBYY Mobile OCR Engine.

Description of the Demo Tool

Here you can find detailed information about the Demo Tool utility (TestShell.exe) which demonstrates the work of

the functions.

Native Library API Reference

This section contains the complete description of ABBYY Mobile OCR Engine native library API.

Licensing

The information about ABBYY Mobile OCR Engine license protection.

Specifications

The list of supported image formats, recognition languages, compatibility information, etc.

Contact ABBYY

Here you can find the contact information of the ABBYY offices and technical support service.

ABBYY Mobile OCR Engine 4: Guided Tour

 6

Guided Tour

This section contains information which will help you to start working with ABBYY Mobile OCR Engine and describes

various special techniques:
• How to Use the Native Library

• Recognizing Business Cards

• Working with Languages

• Working with Dictionaries

• Recognizing with Custom Languages

• Working with Regular Expressions

• Recognizing in MICR Mode

• Description of the Native Sample

• Description of the Demo Tool

 Recognition Settings Dialog Box

• Tips for Taking Photos

How to Use the ABBYY Mobile OCR Engine Native Library
The ABBYY Mobile OCR Engine native library may be used for testing. The ABBYY Mobile OCR Engine library supplied

as DLL and static library and as a wrapper of the library for Android and iOS may be found in the appropriate

distributions.

This section contains description of how to work with DLL and static library.

Go to the Native Library API Reference section for detailed description of the ABBYY Mobile OCR Engine native library

functions and structures.

Loading the library

You start your work with ABBYY Mobile OCR Engine by loading the library with help of the FineInitialize function. It

allows you to specify memory allocation/de-allocation functions and a logging function. Then you need to specify the

license information (see the Licensing section for details).

Note: If you use a trial license, the word "ABBYY" will appear in every 20th line in the recognized text and in every

third recognized business card.
1. [optional] Implement custom memory management functions and a logging function if you wish to

use them.

2. Call the FineInitialize function, passing these functions as input parameters. If you do not wish

to use custom functions, pass 0 for the corresponding parameters.

3. Load the license file into memory.

4. Create a CFineLicenseInfo structure. Assign the pointer to the loaded license data to the

LicenseData field and the size of loaded data to the DataLength field. Assign the name of your

application to the ApplicationID field. It must correspond to the name of the application that is

specif ied in the license file.

5. Call the FineSetLicenseInfo function, passing to it the constant pointer to the

CFineLicenseInfo structure you just conf igured.

ABBYY Mobile OCR Engine 4: Guided Tour

 7

6. After specifying the license you can work with the library until the FineDeinitialize function is

called.

Sample code of library initialization

// Error handling is omitted

// Custom memory allocation function

static void* allocFunction(int size)

{

 void* res = malloc(size);

 return res;

}

// Custom memory release function

static void freeFunction(void* ptr)

{

 free(ptr);

}

// Initialize the library with custom memory management functions and without logging

const TFineErrorCode initializeLibError = FineInitialize(allocFunction, freeFunction,

0);

...

void* loadedLicenseData = 0;

int licenseDataSize = 0;

wchar* appID; // set to your application ID

// Load the license file into memory at the loadedLicenseData address

...

CFineLicenseInfo licenseInfo;

licenseInfo.LicenseData = static_cast<BYTE*>(loadedLicenseData);

licenseInfo.DataLength = licenseDataSize;

licenseInfo.ApplicationId = appID;

const TFineErrorCode errorCode = FineSetLicenseInfo(&licenseInfo);

...

// Work with the library until the FineDeinitialize call

Important! All functions of the ABBYY Mobile OCR Engine library should only be called from the thread in which the

library was initialized. You cannot initialize the library in several threads simultaneously without deinitialization.

Opening and processing the images

Below is a description of a typical procedure performed by ABBYY Mobile OCR Engine:
1. Load the image for recognition. You can open the image file with the help of the

FineLoadImageFromFile function or load it from the input stream using the

FineLoadImageFromInputStream function. These functions convert the image in JPEG or PNG

format into CFineImage internal format of ABBYY Mobile OCR Engine. If you need to load an

image in any other format, you must load it into memory and convert it into CFineImage format

on your side. The functions which perform recognition work with the image in this format.

2. Recognize the image. We will use the FineRecognizeImage function as an example. Configure

the parameters in the following way:

 languages: Recognition languages, passed as an array of the TLanguageID constants. We

do not recommend setting more than two recognition languages at once.

 patterns: You need to load the pattern file which includes the description of the languages

you need into memory and pass its address as TFinePatternsPtr.

To find out which predef ined pattern file you need for your languages, consult the

ABBYY Mobile OCR Engine 4: Guided Tour

 8

PatternsFilesInfo.txt file which you will find in the data/Patterns folder of the

distribution package.

 cjkPatterns: If you need to recognize CJK languages, load the pattern files for those

languages into memory in the same way and create a zero-terminated array of

TFinePatternsPtr variables with the addresses of loaded patterns. Otherwise, pass an

array which contains only one zero pointer.

 dictionaries: Load the dictionary f iles for the languages you use. Attaching the dictionary

will improve recognition quality. See Recognition Languages in ABBYY Mobile OCR Engine

for information on which languages have built-in dictionary support. Create a zero-

terminated array of TFineDictionaryPtr variables with the addresses of loaded

dictionaries. If you do not use dictionaries, pass an array which contains only one zero

pointer (do not pass zero instead of array).

 image: Pass the CFineImage structure you obtained in the first step.

 imageProcessingOptions: Select the image processing options and pass the OR

combination of appropriate TFineImageProcessingOptionsFlags constants. For default

option, pass 0.

 recMode: Choose the recognition mode and specify the appropriate

TFineRecognitionMode constant.

 conf idenceLevel: Choose the level of marking characters as uncertain

(TFineRecognitionConfidenceLevel).

 layoutBuff: The result of processing. Create a CFineLayout* pointer variable which will

receive the recognition results.

 rotation: Create a TFineRotationType variable which will receive the information about

image rotation. You can pass 0 as this parameter if you do not use the recognized text

coordinates.

 progressCallback: Implement the TFineProgressCallbackFunction function if you need

to receive information about the operation progress or be able to cancel the operation. You

can pass zero pointer if you do not use this callback.

 prebuiltDataCallback: Implement the TFinePrebuiltDataCallbackFunction function if

you need to receive information about the image rotation and detected text blocks before

the processing is completed, for example, to display the text blocks while the recognition

is going on. You can pass zero pointer if you do not use this callback.

3. The CFineLayout structure you receive after the operation is completed contains all recognized

text and its coordinates. Iterate through the blocks, the text lines within them, and the characters

within text lines; save the text in the format you need, search it for keywords or work with it in

any other way.

Note: By default, recognition operations will be performed in parallel, using up to 4 threads. You can change this

limitation by calling the FineSetRecognizerThreadsCount after library initialization. Pass 1 for the threadsCount

parameter to turn off multi-threading, or increase the number of threads if you need faster processing. However, the

number of threads working simultaneously can never exceed the number of CPU cores the device provides.

See also

Description of the Native Sample

ABBYY Mobile OCR Engine 4: Guided Tour

 9

Recognizing Business Cards
Business cards contain business information about a company or a person. Business cards can include person name,

company, telephone numbers, fax, e-mail, website addresses and similar information. You may need to capture this

information from paper business cards and save it in digital form. It can be the address book of a mobile phone, e-

mail client, or any other data storage system.

In ABBYY Mobile OCR Engine a business card is represented by a set of fields, which can be of different types such as

name, phone number, e-mail address. Fields of some types can also contain several components, e.g. name field can

contain "first name", "middle name", and "last name" components. To extract the information you need, you can

implement a procedure iterating through fields and performing different actions depending on the field type.

General recommendations

Business card recognition quality will be significantly improved if you add the English language to the list of

recognition languages and use the English.akw keywords dictionary, even if the business cards you recognize are not

in English.

Not all languages are provided with the keywords dictionaries necessary for business card recognition. See

Recognition Languages in ABBYY Mobile OCR Engine for a full list.

Native library

The ABBYY Mobile OCR Engine native library provides the FineRecognizeBusinessCard function for recognizing an

image as a business card. Follow these steps:
1. Load the image for recognition using the FineLoadImageFromFile or

FineLoadImageFromInputStream functions. See How to Use the Native Library for details.

2. The parameters of the FineRecognizeBusinessCard function are the same as for the

FineRecognizeImage function (described in How to Use the Native Library), with the following

exceptions:

 languages: We recommend including the English language (LID_English) in this parameter,

even if your business cards are in some other language.

 keywords: Load the keywords dictionaries for the languages you use. Add the English.akw

dictionary, even if your business cards are not in English. Create a zero-terminated array of

TFineKeywordsPtr variables with the addresses of loaded keywords dictionaries.

 businessCardBuffer: The result is returned as CFineBusinessCard, not as CFineLayout.

Create a CFineBusinessCard* pointer variable which will receive the recognition results.

3. Work with the result of recognition. The CFineBusinessCard structure contains an array of fields

represented by CFineBcrField structure variables. Search through these fields for the information

you need.

Use the value of CFineBcrField.Type to check the type of field (represented by constants of

TBcrFieldType enumeration).

Use the value of CFineBcrField.TextLines to obtain the text of the business card f ield. It can

contain several lines represented by CFineTextLine structures.

If your scenario requires recognizing different kinds of documents and detecting business cards among them, you can

also use the FineAnalyzeTextAsBusinessCard function, which looks for business card fields in the text that has

already been recognized.

See also

How to Use the Native Library

Working with Languages
One of the main recognition parameters is the language which is used during recognition. It is very important for

good quality recognition results to set up the languages of a document correctly.

ABBYY Mobile OCR Engine 4: Guided Tour

 10

Any function you use for recognition takes a set of languages as an input parameter. In general we recommend not

to add too many languages to the set. But, if you are recognizing business cards, adding the English language is

highly recommended, even if the business cards are in another language.

Predefined and custom languages

ABBYY Mobile OCR Engine includes a set of predefined recognition languages. See the list in Recognition Languages

in ABBYY Mobile OCR Engine. Some of these languages have dictionary support. Attaching a dictionary to the

recognition language will improve the results' quality, but it is not mandatory if you are using the native library. See

Working with Dictionaries for details.

You can also create a custom language which will allow only the words conforming to a specified regular expression.

This can be useful if you need to extract some specific data from the images, such as telephone numbers or e-mail

addresses, which are easily described by means of a regular expression. See Recognizing with Custom Languages and

Working with Regular Expressions.

Patterns

The description of a recognition language (i.e. its ID, set of characters, etc.) is stored in a pattern file with the

extension *.rom.

Important! A pattern file must include all languages that you are going to use for recognition.

If you use only predefined languages, you may choose one of the pattern files which are included in the distribution

pack. You can find these files in the data\Patterns folder of the ABBYY Mobile OCR Engine installation folder. This

folder contains pattern files for all languages, certain pairs, and groups. You can find the list of available pattern files

and the languages they correspond to in the PatternsFilesInfo.txt file in the same folder. If none of the pattern

files suits you, or if you are going to use custom languages, you need to create your own pattern file. To create a

custom language, please contact support.

See also

How to Use the Native Library

Working with Dictionaries
ABBYY Mobile OCR Engine allows you to attach dictionaries to a recognition language, which greatly improves

recognition quality.

Dictionaries may be of several types:
• Standard dictionary. This type of dictionary is already provided for the predef ined languages that

have built-in dictionary support (see Recognition Languages in ABBYY Mobile OCR Engine). These

dictionaries are stored in dictionary f iles (*.edc) which are located in the data\Dictionaries folder

of the ABBYY Mobile OCR Engine installation folder.

• Keywords dictionary. This dictionary is needed for business card recognition (BCR) and is provided

for some predefined languages (see Recognition Languages in ABBYY Mobile OCR Engine). This

dictionary contains words that appear most often on business cards, for example, "Phone" , "Address",

and etc. These dictionaries are stored in *.akw file located in the data\BcrData folder.

In the ABBYY Mobile OCR Engine native library, to use recognition functions (FineRecognizeImage,

FineRecognizeRegion, and FineRecognizeBusinessCard), you must set up the list of dictionaries (the

dictionaries parameter) and the list of keywords dictionaries (the keywords parameter in the

FineRecognizeBusinessCard and FineAnalyzeTextAsBusinessCard functions).

Any predefined language (e.g. English) can be used without dictionary support. This is generally done to save

memory, but the quality of recognition will deteriorate.

To use a predefined language without dictionary support, you need to pass as the dictionaries parameter an array

which contains only one pointer to zero.

However, note that you cannot use business card recognition functions without at least one keywords dictionary. We

strongly recommend adding the English keywords dictionary for recognition of business cards in any language. The

results' quality will almost always improve.

ABBYY Mobile OCR Engine 4: Guided Tour

 11

See also

How to Use the ABBYY Mobile OCR Engine Library

ABBYY Mobile OCR Engine Distribution Kit

Recognizing with Custom Languages
To recognize image with a custom language, you need to create a pattern file that contains all recognition languages

that you are going to use, and you also have to know the IDs of these recognition languages and the name of the

pattern file.

If you need to create a custom language, please contact support.

Why create a custom language

Here are some examples of scenarios in which a custom language improves recognition:
• If you need to extract some specif ic data from the images, such as telephone numbers or e -mail

addresses, a custom language which will allow only words conforming to a specified regular

expression can be created. Limiting the alphabet to exactly the set of symbols that occur can also be

helpful. To explore the ABBYY Mobile OCR Engine regular expression alphabet see Working with

Regular Expressions.

• If you recognize texts which use unusual vocabulary, e.g. contain many technical terms, they may not

be recognized well using the inbuilt dictionary. In this case a custom language can be created which

would be a copy of English, but work with a user-def ined dictionary, so that the terms are recognized

better.

Native library

If you use the FineRecognizeImage, FineRecognizeRegion, and FineRecognizeBusinessCard functions,

which work with an image, you need to set up a list of recognition languages (the languages parameter) and a

pattern file (the patterns parameter).

Note: The pattern file with custom language should be the first in the patterns parameter.

Each language has a unique ID (type of TLanguageID). If you attempt to use a language without or with a wrong

pattern file, the recognition function will return the FEC_InvalidArgument error code.

See also

Working with Regular Expressions

Working with Regular Expressions
The ABBYY Mobile OCR Engine regular expression alphabet is described in the following table:

Item name Conventional

regular

expression

sign

Usage examples and explanations

Any

character

. c.t — denotes words like "cat", "cot"

Character

from a

character

range

[] [b-d]ell — denotes words like "bell", "cell", "dell"

[ty]ell — denotes words "tell" and "yell".

Character out

of a

character

[^] [^y]ell — denotes words like "dell", "cell", "tell", but forbids "yell"

[^n-s]ell — denotes words like "bell", "cell", but forbids "nell", "oell",

"pell", "qell", "rell" and "sell"

ABBYY Mobile OCR Engine 4: Guided Tour

 12

range

Or | c(a|u)t — denotes words "cat" and "cut"

0 or more

occurrences

in a row

* 10* — denotes numbers 1, 10, 100, 1000 etc.

1 or more

occurrences

in a row

+ 10+ — allows numbers 10, 100, 1000 etc., but forbids 1.

Letter or digit [0-9a-zA-Z] [0-9a-zA-Z] — allows a single character;

[0-9a-zA-Z]+ — allows any word

Capital Latin

letter

[A-Z]

Small Latin

letter

[a-z]

Capital

Cyrillic letter

[А-Я]

Small Cyrillic

letter

[а-я]

Digit [0-9]

Space \s

System

character

@

Word from

dictionary

@(Dictionary) The Dictionary parameter sets the path to the user dictionary from

which words must be taken. Backslashes in the path must be

doubled. For example: @(D:\\MyFolder\\MyDictionary.amd).

Note: Some programming languages (such as C++) require you to

escape backslashes in string literals. In this case you will need two

escaped backslashes, which will result in a quadrupled backslash. The

example above will look like this in C++:

L"@(D:\\\\MyFolder\\\\MyDictionary.amd)"

Notes:
1. Some characters used in regular expressions are "auxiliary", i.e. they are used for system

purposes. As you can see from the list above, such characters are square brackets, periods, etc. If

you wish to enter an auxiliary character as a normal one, put a backslash (\) before it.

Example: [t-v]x+ denotes words like tx, txx, txx, etc., ux, uxx, etc., but \[t-v\]x+ denotes words

like [t-v]x, [t-v]xx, [t-v]xxx etc.

2. If you need to group certain regular expression elements, use parentheses. For example, (a|b)+|c

denotes c and any combinations like abbbaaabbb, ababab, etc. (a word of any non-zero length in

which there may be any number of a's and b's in any order), whilst a|b+|c denotes a, c, and b, bb,

bbb, etc.

Sample regular expressions

Regular expression for dates

The number denoting day may consist of one digit (e.g. 1, 2 etc.) or two digits (e.g. 02, 12), but it cannot be zero (00

or 0). The regular expression for the day should then look like this: ((|0)[1-9])|([12][0-9])|(30)|(31).

The regular expression for the month should look like this: ((|0)[1-9])|(10)|(11)|(12).

The regular expression for the year should look like this: ((19)[0-9][0-9])|([0-9][0-9])|((20)[0-9][0-9]|([0-9][0-9])).

What is left is to combine all this together and separate the numbers by period (e.g. 1.03.1999). The period is an

auxiliary sign, so we must put a backslash (\) before it. The regular expression for the full date should then look like

this:

ABBYY Mobile OCR Engine 4: Guided Tour

 13

(((|0)[1-9])|([12][0-9])|(30)|(31))\. (((|0)[1-9])|(10)|(11)|(12))\.(((19)[0-9][0-9])|([0-9][0-9])|((20)[0-9][0-9]|([0-

9][0-9])))

Regular expression for e-mail addresses

You can easily make a language for denoting e-mail addresses. The regular expression for an e-mail address should

look like this:

[a-zA-Z0-9_\-\.]+\@[a-zA-Z0-9\.\-]+\.[a-zA-Z]+

See also

Recognizing with Custom Languages

Recognizing in MICR Mode
ABBYY Mobile OCR Engine supports Magnetic Ink Character Recognition (MICR) mode. A custom "MICR" language is

defined for recognition of images in MICR Mode, and it is included in the Micr.rom pattern file which can be found in

the data\Patterns folder of the distribution package. The MICR language has the "0123456789ABCD" alphabet and

language ID equal to 1024.

Important: Only the MICR E13B characters are recognized in the MICR mode, all other fonts are ignored.

Native library

To enable MICR mode in the ABBYY Mobile OCR Engine native library, call a recognition method, e.g.,

FineRecognizeImage, with the following values:
1. languages: an array containing one constant, the MICR recognition language ID, which is 1024. In

MICR mode you cannot add any more languages to the list.

2. patterns: the address of the Micr.rom file loaded into memory.

3. imageProcessingOptions: FIPO_MicrMode constant. You can pass an OR combination with some

other constants, which contain the required settings as to geometry correction and other image

transformations.

See also

How to Use the Native Library

Description of the ABBYY Mobile OCR Engine Native Sample
ABBYY Mobile OCR Engine includes a code sample written in C++ which illustrates the work with the native library.

The code sample is located in the \Sample\Generic\Sources\src subfolder of the ABBYY Mobile OCR Engine

folder.

The sample loads PNG image files from the \Samples\Generic\SampleImages folder with the help of the

FineLoadImageFromFile function and recognizes them using the FineRecognizeBusinessCard,

FineRecognizeImage, and FineRecognizeBarcode functions.

Note: If you use a trial license, the word "ABBYY" will appear in every 20th line in the recognized text and in every

third recognized business card.

See also

How to Use the Native Library

Native Library API Reference

ABBYY Mobile OCR Engine 4: Guided Tour

 14

Description of the Demo Tool
ABBYY Mobile OCR Engine distribution kit includes a special Demo Tool utility (TestShell.exe) which demonstrates the

work of the functions. This utility is located in the \Tools.Windows subfolder of the ABBYY Mobile OCR Engine

folder.

The Demo Tool also performs the following functions:
• selecting input parameters of the functions (for example, the optimal memory size, which is

necessary to recognize a specif ic image);

• viewing the results of recognition of various images;

• saving recognition results.

Main Window

Menu Bar

File Menu

In the File menu you can open an image (File>Open Image...)

Boxes Menu

The Boxes menu is designed for working with blocks, which have been detected during analysis or recognition. You

can renumber, delete, and/or move blocks, change block types (Text or Picture), and save the current arrangements

of blocks to a file or load it from a file.

Action Menu

The following items of the Action menu allow you to call the correspond ABBYY Mobile OCR Engine functions:
• Service functions:

 You can select the Auto-initialize item and the library will be initialized automatically or

select the FineInitialize and FineDeinitialize functions to initialize and deinitialize the

library

 Get last error message (the FineGetLastErrorMessage function)

ABBYY Mobile OCR Engine 4: Guided Tour

 15

 Get shell key license information (the FineGetLicenseInfo function)

 Get version (the FineGetVersionInfo function)

• Preprocess image (the FinePreprocessImage function)

• Preprocess words (the FinePrebuildWordsInfo function)

• Find all lines (the FineGetTextLines function)

• Find and recognize barcodes (the FineExtractBarcodes function)

• Recognize active block (the FineRecognizeRegion function)

• Recognize all blocks (the FineRecognizeRegion function)

• Recognize all blocks with words info (the FineRecognizeRegion function)

• Recognize image (the FineRecognizeImage function)

• Recognize business card (the FineRecognizeBusinessCard function)

• Generate word suggestions (the FineGetWordSuggest function)

• Recognize barcode (the FineRecognizeBarcode function)

By selecting the Save Recognition Results... item you can save the recognition results.

The Recognition settings... item opens a dialog box that allows you to set up image preprocessing and recognition

parameters and select the optimal memory size which is necessary to recognize a specific image.

The Barcode recognition setting... item opens the corresponding dialog box that allows you to specify barcode

type, orientation, and the other parameters.

See also

Recognition Settings Dialog Box

Recognition Settings Dialog Box

This dialog box allows you to set up image preprocessing and recognition parameters and select the optimal memory

size which is necessary to recognize a specific image.

ABBYY Mobile OCR Engine 4: Guided Tour

 16

Option name Option description

Language

database path

A path to the language database (the textlang.dat file)

Recognition

languages

Specifies the recognition languages. See Recognition Languages in ABBYY Mobile

OCR Engine.

Analysis

languages

Specifies languages which are used during image analysis.

Full dictionaries The recognition languages which have full dictionary support are marked in

Recognition Languages in ABBYY Mobile OCR Engine.

Image preprocessing options group

Disable deskew Specifies whether the skew should be corrected.

Has CJK Specifies whether the input image has Asian characters.

Find All Text Specifies whether the program should find all text on the image.

Is European with

some CJK

Specifies whether the input image contains European-language and some CJK text.

Detect page

orientation

Specifies whether the program should detect page orientation.

Prohibit vertical

CJK text

If this option is selected, the program will recognize only a horizontal CJK text on

image, all vertical CJK text will be ignored.

MICR text type Specifies whether the MICR E13B font must be recognized.

Confidence level Specifies the recognition confidence level. If the level 0 is set, none of the

uncertain characters are marked. If the level 4 is set, all suspicious characters are

marked as uncertain. Level 3 is set as default.

ABBYY Mobile OCR Engine 4: Guided Tour

 17

Recognition

mode

Specifies the recognition mode:
• Full

Full recognition mode

• Fast

This mode provides 25% faster recognition speed for European

languages

Adjust image

resolution

Allows you to adjust image resolution.

RAM size

Specifies the optimal memory size, which is necessary to recognize a specific

image.

See also

Description of the Demo Tool

Tips for Taking Photos
Taking photos of documents requires some skill and practice. The characteristics of your camera and shooting

conditions are also important.

Note: For detailed information about the settings of your camera, please refer to the documentation supplied with

your camera.

Before taking a picture:
1. Make sure that the page f its entirely within the frame.

2. Make sure that lighting is evenly distributed across the page and that there are no dark areas or

shadows.

3. Straighten out the page if required and position the camera parallel to the plane of the document

so that the lens looks to the center of the text being photographed.

The topics below outline the required camera specifications and shooting modes.

Digital Camera Requirements

Minimum Requirements
• 2-megapixel sensor

• Variable focus lens

Recommended Requirements
• 5-megapixel sensor

• Flash disable feature

• Manual aperture control or aperture priority mode

• Manual focusing

• An anti-shake system, otherwise the use of a tripod is recommended

• Optical zoom

Shooting Modes

Lighting

ABBYY Mobile OCR Engine 4: Guided Tour

 18

Make sure there is enough light (preferably daylight). In artificial lighting, use two light sources positioned so as to

avoid shadows.

Positioning the Camera

If possible, use a tripod. Position the lens parallel to the plane of the document and point it toward the center of the

text.

At full optical zoom, the distance between the camera and the document must be sufficient to fit the entire document

into the frame. Usually this distance will be 50-60 cm.

Flash

Whenever possible, turn off the flash to avoid glare and sharp shadows on the page. In poor lighting conditions, try

using the flash from a distance of about 50 cm, or, preferably, use additional lighting.

Important! Using the flash when photographing documents printed on glossy paper causes the worst glare.

White Balance

If your camera allows, use a white sheet of paper to set white balance. Otherwise, select the white balance mode

which best suits the current lighting conditions.

What do I do if...

There is not enough light

Try the following:
• Select a greater aperture value

• Select a greater ISO value for sensitivity

• Use manual focusing if the camera cannot lock the focus automatically

ABBYY Mobile OCR Engine 4: Guided Tour

 19

The picture is too dark and low-contrast

Try using additional light sources. Otherwise, increase the aperture value.

The picture is not sharp enough

Auto focus may not work properly in poor lighting or when photographing at a close distance. In poor lighting

conditions, try using an additional light source. When photographing a document up close, try using the Macro (or

Close-Up) mode. Otherwise, if possible, focus the camera manually.

If only a part of the picture is blurred, try reducing the aperture value. Increase the distance between the document

and the camera and use maximum zoom. Focus on a point anywhere in between the center and a border of the

image.

In poor lighting conditions, when shooting in auto mode, the camera will use slower shutter speeds, which makes the

resulting photo less sharp. In this case, try the following:
• Enable the anti-shake system, if available.

• Use auto release to prevent the shaking of the camera caused by pressing the shutter release button

(even when using a tripod).

The flash causes glare in the center of the picture

Turn off the flash. Otherwise, try photographing from a greater distance.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 20

Native Library API Reference

This section contains the description of ABBYY Mobile OCR Engine native library:
• Using Types

• Return Codes

• Functions

 Callback Functions

 Custom Memory Management Functions

• Enumerations

• Structures

See also

How to Use the Native Library

Types in ABBYY Mobile OCR Engine Native Library
ABBYY Mobile OCR Engine native library functions use the following types:

Type Description

BYTE Byte (8 bits).

typedef unsigned char BYTE;

DWORD 32-bit unsigned integer.

typedef unsigned long DWORD;

RECT This structure defines the coordinates of the upper-left and lower-

right corners of a rectangle.

typedef struct tagRECT {

 long left;

 long top;

 long right;

 long bottom;

} RECT, *PRECT;

TFineDictionaryPtr1 ABBYY Mobile OCR Engine dictionaries.

typedef void* TFineDictionaryPtr;

TFineImageLoadingOptions The image processing options.

typedef DWORD TFineImageLoadingOptions;

TFineImageProcessingOptions The image processing options.

typedef DWORD TFineImageProcessingOptions;

TFinePatternsPtr1 ABBYY Mobile OCR Engine patterns.

typedef void* TFinePatternsPtr;

TFineKeywordsPtr1 ABBYY Mobile OCR Engine keywords dictionaries.

typedef void* TFineKeywordsPtr;

WCHAR Unicode character.

typedef WORD WCHAR;

WORD 16-bit unsigned integer.

typedef unsigned short WORD;

ABBYY Mobile OCR Engine 4: Native Library API Reference

 21

1 — It is very important for ARM processors that absolute addresses corresponding to variables of these types are 4-

byte aligned.

Standard Return Codes of ABBYY Mobile OCR Engine Functions
Below is the list of the standard return codes of the ABBYY Mobile OCR Engine functions.

typedef enum tagTFineErrorCode {

 FEC_NoError = 0,

 FEC_NotInitialized = 1,

 FEC_LicenseError = 2,

 FEC_InvalidArgument = 3,

 FEC_NotEnoughMemory = 5,

 FEC_InternalFailure = 6,

 FEC_TerminatedByCallback = 7,

 FEC_AlreadyInitialized = 8,

} TFineErrorCode;

Elements

Name Description

FEC_NoError The function is completed successfully.

FEC_NotInitialized The library has not been initialized.

FEC_LicenseError Unacceptable license information is used or the functionality is not available

under the license.

FEC_InvalidArgument One or more arguments are invalid. Use the FineGetLastErrorMessage

function for diagnostics.

FEC_NotEnoughMemory Not enough memory to perform the operation.

FEC_InternalFailure An unspecified internal error.

FEC_TerminatedByCallback The operation was terminated by the user via a callback function.

FEC_AlreadyInitialized The library has already been initialized.

List of the ABBYY Mobile OCR Engine Functions
Function Description

FineAllocMemory Allocates memory.

FineAnalyzeImage Analyzes the image and finds the text blocks on it.

FineAnalyzeTextAsBusinessCard Detects business card fields in text lines returned from the

FineRecognizeImage function.

FineAreCjkLanguagesSupported Returns a non-zero value if the library supports the CJK

language recognition.

FineDeinitialize Deinitializes the ABBYY Mobile OCR Engine library.

FineExecutionLogFunction Delivers to the client the information about execution.

FineExtractBarcodes Finds and recognizes all barcodes on the image.

FineFreeMemory Releases memory allocated for output buffer.

FineGetLastErrorMessage Returns the last error message.

FineGetLicenseInfo Returns information about the current license.

FineGetTextLines Detects text lines on the image.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 22

FineGetVersionInfo Returns the version of the library.

FineGetWordSuggest Generates a list of suggestions for the selected word from the

specified dictionary.

FineInitialize Initializes the ABBYY Mobile OCR Engine library.

FineLoadImageFromFile Loads an image from a file.

FineLoadImageFromInputStream Loads an image from the input stream.

FinePrebuildWordsInfo Returns the document layout information, including rectangles

of words, without the text recognition.

FinePreprocessImage Binarizes an image.

FineRecognizeBarcode Recognizes barcodes.

FineRecognizeBlocks Recognizes a set of blocks on the image. Layout analysis is not

performed.

FineRecognizeBusinessCard Recognizes all text lines on the image and analyzes the image

as a business card in one step.

FineRecognizeImage Recognizes all text lines on the image.

FineRecognizeRegion Recognizes all text lines in the specified region.

FineSetLicenseInfo Sets the ABBYY Mobile OCR Engine the license information.

FineSetRecognizerThreadsCount Limits the number of threads that can be used for multi-

threaded processing.

Callback Functions

TFinePrebuiltDataCallbackFunction Delivers to the client the prebuilt information about the

document layout, text blocks and lines before the text

recognition.

TFineProgressCallbackFunction Delivers to the client the information about the approximate

percentage of analysis or recognition.

Custom Memory Management Functions

TFineAllocMemoryFunction Implemented on the client side. Custom memory allocation

function.

TFineFreeMemoryFunction Implemented on the client side. Custom memory release

function.

FineAllocMemory Function

This function allocates memory. If during library initialization you specified a custom function for memory allocation,

that function will be used.
C Syntax

TFineErrorCode FineAllocMemory(

 int size,

 void** ptr

);

Parameters

size

[in] The size of memory buffer that needs to be allocated.

ptr

[out] A pointer to allocated memory.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 23

See also

FineFreeMemory

FineInitialize

FineAnalyzeTextAsBusinessCard Function

This function finds business card fields in text lines returned from the FineRecognizeImage function.
C Syntax

TFineErrorCode FineAnalyzeTextAsBusinessCard(

 const TFineKeywordsPtr keywords[],

 const CFineLayout* layoutBuff,

 CFineBusinessCard** businessCardBuffer,

 TFineProgressCallbackFunction progressCallback

);

Parameters

keywords[]

[in] The zero-terminated list of keywords dictionaries as a TFineKeywordsPtr variable. For the best result of

business card recognition, add the English language keywords dictionary to the list, regardless of the language of the

business card.

layoutBuff

[in] A reference to a CFineLayout variable which is output variable of the FineRecognizeImage function.

businessCardBuffer

[out] A pointer to pointer variable that receives the interface pointer of a CFineBusinessCard variable which

represents a business card. This pointer must be released afterwards with the help of the FineFreeMemory

function.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

FineAreCjkLanguagesSupported Function

This function returns a non-zero value if the library supports recognition of the CJK languages.
C Syntax

int FineAreCjkLanguagesSupported();

Return value

It returns a non-zero value if the library supports recognition of the CJK languages.

FineDeinitialize Function

This function deinitializes the ABBYY Mobile OCR Engine library.
C Syntax

TFineErrorCode FineDeinitialize();

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineInitialize

ABBYY Mobile OCR Engine 4: Native Library API Reference

 24

FineExecutionLogFunction Function

This function is implemented on the client side. It delivers to the client the information about execution. It is used as

input parameter in the FineInitialize function.
C Syntax

void (*TFineExecutionLogFunction)(const WCHAR* str);

Parameters

str

[in] Log information.

See also

FineInitialize

FineExtractBarcodes Function

This function finds and recognizes all barcodes on the image.
C Syntax

TFineErrorCode FineExtractBarcodes(

 const CFineImage* image,

 unsigned allowedTypes,

 unsigned allowedOrientations,

 unsigned allowedSupplements,

 int hasChecksum,

 int isCode39WithoutAsterisk,

 int isBinaryInterpretedAsText,

 TFineSupportedCodepage defaultCodePage,

 CFineLayout** layoutBuff,

 TFineProgressCallbackFunction progressCallback

);

Parameters

image

[in] The image to be recognized as a CFineImage variable.

allowedTypes

[in] The OR combination of the TFineBarcodeType constants that define acceptable barcode types.

allowedOrientations

[in] The OR combination of the TFineBarcodeOrientation constants that define the possible orientations of the

barcode.

allowedSupplements

[in] The OR combination of the TFineBarcodeSupplement constants that define the possible supplements of the

barcode. This parameter is ignored for barcodes without supplement. Set the parameter to FBS_Void if the barcode

you recognize does not have a supplement.

hasChecksum

[in] Should not be zero if the barcode should be recognized as a barcode with checksum. It is valid for Code39,

Interleaved25, Codabar, and Matrix25 barcodes. For these types of the barcodes, the last symbol of the barcode is

considered as control sum of all barcode symbols, and is checked during the recognition.

isCode39WithoutAsterisk

[in] Should not be zero if the Code39 barcode has no start and stop symbol, the asterisk "*". It is valid for Code39

barcode. This parameter is ignored if the allowedTypes parameter set to more than one type.

isBinaryInterpretedAsText

ABBYY Mobile OCR Engine 4: Native Library API Reference

 25

[in] Should not be zero if byte data should be interpreted as text in the current code page. If this parameter is zero

the data will be stored in hexadecimal format. This parameter is ignored if the allowedTypes parameter set to more

than one type.

defaultCodePage

[in] A TFineSupportedCodepage constant that specifies a default code page. If barcode was created using code

page that differs from the specification code page, that code page should be specified in this parameter. This

parameter is ignored if the allowedTypes parameter set to more than one type.

layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable that contains the

recognition results. This pointer must be released afterwards with the help of the FineFreeMemory function.

progressCallback

[in] The pointer to the TFineProgressCallbackFunction callback function that delivers the progress information. It

can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

TFineBarcodeType

TFineBarcodeOrientation

TFineBarcodeSupplement

FineFreeMemory Function

This function releases memory allocated internally by the processing engine or by an explicit call to

FineAllocMemory. If during library initialization you specified a custom function for memory release, that function

will be used.
C Syntax

TFineErrorCode FineFreeMemory(void* ptr);

Parameters

ptr

[in] A pointer to memory which must be released.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineAllocMemory

FineInitialize

FineGetLastErrorMessage Function

This function returns the human-readable description of the last error that occurred in ABBYY Mobile OCR Engine

library functions.
C Syntax

TFineErrorCode FineGetLastErrorMessage(const WCHAR** message);

Parameters

message

[out] A pointer to the string which receives the message.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 26

Return value

This function returns FEC_NotInitialized if the ABBYY Mobile OCR Engine library has not been initialized. It can also

return the other standard return values of ABBYY Mobile OCR Engine functions.

FineGetLicenseInfo Function

This function returns information about the current license.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each

third recognized business card.
C Syntax

TFineErrorCode FineGetLicenseInfo(WCHAR** licenseInfo);

Parameters

licenseInfo

[out] A string with license information. This pointer must be released afterwards with the help of the

FineFreeMemory function.

Return value

This function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineSetLicenseInfo

FineGetTextLines Function

This function detects text lines on the image.
C Syntax

TFineErrorCode FineGetTextLines(

 const CFineImage* image,

 TFineImageProcessingOptions imageProcessingOptions,

 CFineRects** linesBuff,

 TFineProgressCallbackFunction progressCallback,

);

Parameters

image

[in] The image to be recognized as a CFineImage variable.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing

parameters.

linesBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineRects variable which describes an

array of rectangles. This pointer must be released afterwards with the help of the FineFreeMemory function.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 27

FineGetVersionInfo Function

This function returns the version of the library in following format: <major>.<minor>.<modification>.<build>. For

example, 4.2.1.10.
C Syntax

void FineGetVersionInfo(

 int* major,

 int* minor,

 int* modification,

 int* build

);

Parameters

major

[out] A major version of the library.

minor

[out] A minor version of the library.

modification

[out] A modification version of the library.

build

[out] A build number of the library.

Return value

This function returns the standard return values of ABBYY Mobile OCR Engine functions.

FineGetWordSuggest Function

This function generates a list of suggestions for the selected word from the specified dictionary.
C Syntax

TFineErrorCode FineGetWordSuggest(

 const TFineDictionaryPtr dictionary,

 const WCHAR word[],

 int wordLength,

 int stringAssurence

 CFineWordSuggestion** suggestionBuff

);

Parameters

dictionary

[in] The address of the specified dictionary as a TFineDictionaryPtr variable.

word[]

[in] The word suggestion for which will be generated.

wordLength

[in] The number of characters in the word suggestion for which will be generated.

stringAssurence

[in] The average confidence of characters in the word. It must in the range from 0 to 100. The more this parameter,

the less suggestions will be created.

suggestionBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineWordSuggestion variable which

represents an array of word suggestions. This pointer must be released afterwards with the help of the

FineFreeMemory function.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 28

Return value

It returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages

Working with Dictionaries

FineInitialize Function

This function initializes the ABBYY Mobile OCR Engine library. It allows you to specify client-implemented functions for

memory allocation and release and a logging function.

Important! All functions of the ABBYY Mobile OCR Engine library should be called only from the thread in which the

library was initialized. You can not initialize the library in several threads simultaneously or parallel without

deinitialization.
C Syntax

TFineErrorCode FineInitialize(

 TFineAllocMemoryFunction allocFunction,

 TFineFreeMemoryFunction freeFunction,

 TFineExecutionLogFunction executionLogFunction

);

Parameters

allocFunction

[in] A custom function for memory allocation TFineAllocMemoryFunction. All memory used by the library will be

allocated through this function. This parameter is optional. If this parameter is zero, memory will be allocated in

standard way.

freeFunction

[in] A custom function for memory release TFineFreeMemoryFunction. This function is used to release memory

which was allocated by the function specified in the allocFunction parameter. This parameter is optional. If the

allocFunction parameter is zero, this parameter must be zero too.

executionLogFunction

[in] A custom function FineExecutionLogFunction which receives the logging information (errors, warnings and

tips which occur during the execution). This parameter is optional. If this parameter is zero, the logging will be

disabled.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineDeinitialize

Memory Management Functions

How to Use the Native Library

FineLoadImageFromFile Function

This function loads an image from a file.
C Syntax

TFineErrorCode FineLoadImageFromFile(

 CFineImageFile* imageFile,

 TFineImageLoadingOptions imageLoadingOptions,

 const RECT* cropRect,

 CFineImage** imageBuff

);

ABBYY Mobile OCR Engine 4: Native Library API Reference

 29

Parameters

imageFile

[in] A pointer to the CFineImageFile object for loading an image from a file.

imageLoadingOptions

[in] The OR combination of the TFineImageLoadingOptionsFlags constants which define the image loading

parameters.

cropRect

[in] A pointer to a rectangle which defines the image crop. If it is zero, the image is loaded without crop.

imageBuff

[out] A pointer to pointer variable that receives the interface pointer to a CFineImage variable which stores the

loaded image. This pointer must be released afterwards with the help of the FineFreeMemory function.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

FineLoadImageFromInputStream Function

This function loads an image from the input stream.
C Syntax

TFineErrorCode FineLoadImageFromInputStream(

 CFineImageInputStream* imageInputStream,

 TFineImageLoadingOptions imageLoadingOptions,

 const RECT* cropRect,

 CFineImage** imageBuff

);

Parameters

imageInputStream

[in] A pointer to the CFineImageInputStream object for loading data from the input stream.

imageLoadingOptions

[in] OR combination of the TFineImageLoadingOptionsFlags constants which define the image loading

parameters.

cropRect

[in] A pointer to a rectangle to crop. If it is zero, the image is loaded without crop.

imageBuff

[out] A pointer to pointer variable that receives the interface pointer to a CFineImage variable which stores the

loaded image. This pointer must be released afterwards with the help of the FineFreeMemory function.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

ABBYY Mobile OCR Engine 4: Native Library API Reference

 30

FinePrebuildWordsInfo Function

This function returns the document layout information, including rectangles of words, without the text recognition. It

does not support CJK languages. If any CJK language is included in the languages parameter, the function returns an

error.
C Syntax

TFineErrorCode FinePrebuildWordsInfo(

 const TLanguageID languages[],

 const TFinePatternsPtr patterns,

 const CFineImage* image,

 TFineImageProcessingOptions imageProcessingOptions,

 CFinePrebuiltLayoutInfo** finePrebuiltLayoutInfo,

 TFineRotationType* rotation,

 TFineProgressCallbackFunction progressCallback

);

Parameters

languages[]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined.

Note: It is better not to add to the list more than two recognition languages.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

image

[in] The image to be recognized as a CFineImage variable.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants that define the image processing

parameters.

finePrebuiltLayoutInfo

[out] A pointer to the CFinePrebuiltLayoutInfo pointer with the output results. This pointer must be released

afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant that specifies the rotation angle of an input image before recognition if the

FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.

Note: The recognized text coordinates correspond to a rotated image.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages

Working with Dictionaries

FinePreprocessImage Function

This function binarizes an image and significantly reduces the size of the image. It can also perform skew correction,

detect orientation etc., depending on the value of imageProcessingOptions parameter.
C Syntax

TFineErrorCode FinePreprocessImage(

 const CFineImage* image,

 TFineImageProcessingOptions imageProcessingOptions,

 CFineImage** preprocessedImageBuff,

ABBYY Mobile OCR Engine 4: Native Library API Reference

 31

 CFineImageTransformationInfo** transformationInfo,

 TFineProgressCallbackFunction progressCallback

);

Parameters

image

[in] The image to be binarized as a CFineImage variable.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing

parameters.

preprocessedImageBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineImage variable which describes the

resultant image. This pointer must be released afterwards with the help of the FineFreeMemory function.

transformationInfo

[out] A pointer to pointer variable that receives the interface pointer of a CFineImageTransformationInfo variable

which stores information about input image transformation. This pointer must be released afterwards with the help of

the FineFreeMemory function.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineFreeMemory

FineRecognizeBarcode Function

This function recognizes an image of a barcode.

Consider also using the FineExtractBarcodes function, which can recognize more than one barcode on the image.
C Syntax

TFineErrorCode FineRecognizeBarcode(

 const CFineImage* image,

 DWORD allowedTypes,

 DWORD allowedOrientations,

 DWORD allowedSupplements,

 int hasChecksum,

 int isCode39WithoutAsterisk,

 int isBinaryInterpretedAsText,

 TFineSupportedCodepage defaultCodePage,

 WCHAR unknownLetter,

 CFineBarcode** resultBuff,

 TFineProgressCallbackFunction progressCallback

);

Parameters

image

[in] The image to be recognized as a CFineImage variable.

allowedTypes

[in] The OR combination of the TFineBarcodeType constants that define acceptable barcode types.

allowedOrientations

ABBYY Mobile OCR Engine 4: Native Library API Reference

 32

[in] The OR combination of the TFineBarcodeOrientation constants that define the possible orientations of the

barcode.

allowedSupplements

[in] The OR combination of the TFineBarcodeSupplement constants that define the possible supplements of the

barcode. This parameter is ignored for barcodes without supplement. Set the parameter to FBS_Void if the barcode

you recognize does not have a supplement.

hasChecksum

[in] Should not be zero if the barcode should be recognized as a barcode with checksum. It is valid for Code39,

Interleaved25, Codabar, and Matrix25 barcodes. For these types of the barcodes, the last symbol of the barcode is

considered as control sum of all barcode symbols, and is checked during the recognition.

isCode39WithoutAsterisk

[in] Should not be zero if the Code39 barcode has no start and stop symbol, the asterisk "*". It is valid for Code39

barcode. This parameter is ignored if the allowedTypes parameter set to more than one type.

isBinaryInterpretedAsText

[in] Should not be zero if byte data should be interpreted as text in the current code page. If this parameter is zero

the data will be stored in hexadecimal format. This parameter is ignored if the allowedTypes parameter set to more

than one type.

defaultCodePage

[in] A TFineSupportedCodepage constant that specifies a default code page. If barcode was created using code

page that differs from the specification code page, that code page should be specified in this parameter. This

parameter is ignored if the allowedTypes parameter set to more than one type.

unknownLetter

[in] A character that is written instead of unrecognized symbol or binary zero. Also it indicates unsuccessful

recognition result.

resultBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineBarcode variable that contains the

recognition results. This pointer must be released afterwards with the help of the FineFreeMemory function. If the

function fails to recognize the image as a barcode, this parameter contains a character specified in the unknownLetter

parameter with FTCQ_Min quality and have FBT_Unrecognized type in the Type property.

progressCallback

[in] The pointer to the TFineProgressCallbackFunction callback function that delivers the progress information. It

can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

TFineBarcodeType

TFineBarcodeOrientation

TFineBarcodeSupplement

FineRecognizeBusinessCard Function

This function recognizes all text lines on the image and analyzes the image as a business card in one step.
C Syntax

TFineErrorCode FineRecognizeBusinessCard(

 const TLanguageID languages[],

 const TFinePatternsPtr patterns,

 const TFinePatternsPtr* cjkPatterns,

 const TFineDictionaryPtr dictionaries[],

 const TFineKeywordsPtr keywords[],

 const CFineImage* image,

ABBYY Mobile OCR Engine 4: Native Library API Reference

 33

 TFineImageProcessingOptions imageProcessingOptions,

 TFineRecognitionMode recMode,

 TFineRecognitionConfidenceLevel confidenceLevel,

 CFineBusinessCard** businessCardBuffer,

 TFineRotationType* rotation,

 TFineProgressCallbackFunction progressCallback,

 TFinePrebuiltDataCallbackFunction prebuiltDataCallback

);

Parameters

languages[]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not

recommend adding more than two recognition languages to the list.

For the best result of business card recognition, add the English language to the list of the recognition languages,

regardless of the language of the business card.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

cjkPatterns

[in] The zero-terminated list of pointers to the patterns for CJK languages.

dictionaries[]

[in] The zero-terminated list of dictionaries as an array of the TFineDictionaryPtr variables.

keywords[]

[in] The zero-terminated list of keywords dictionaries as an array of the TFineKeywordsPtr variables. For the best

result of business card recognition, add the English language keywords dictionary to the list, regardless of the

language of the business card.

image

[in] The image to be recognized as a CFineImage variable.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing

parameters.

recMode

[in] The TFineRecognitionMode constant which sets the recognition mode.

confidenceLevel

[in] The TFineRecognitionConfidenceLevel constant which sets the recognition confidence level.

businessCardBuffer

[out] A pointer to pointer variable that receives the interface pointer of a CFineBusinessCard variable which

represents a business card. This pointer must be released afterwards with the help of the FineFreeMemory

function.

rotation

[out] The TFineRotationType constant which specifies the rotation angle of an input image before recognition if the

FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.

Note: The recognized text coordinates correspond to a rotated image.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document

layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 34

See also

Recognizing Business Cards

Working with Languages

Working with Dictionaries

FineRecognizeImage Function

This function recognizes all text lines on the image.
C Syntax

TFineErrorCode FineRecognizeImage(

 const TLanguageID languages[],

 const TFinePatternsPtr patterns,

 const TFinePatternsPtr* cjkPatterns,

 const TFineDictionaryPtr dictionaries[],

 const CFineImage* image,

 TFineImageProcessingOptions imageProcessingOptions,

 TFineRecognitionMode recMode,

 TFineRecognitionConfidenceLevel confidenceLevel,

 CFineLayout** layoutBuff,

 TFineRotationType* rotation,

 TFineProgressCallbackFunction progressCallback,

 TFinePrebuiltDataCallbackFunction prebuiltDataCallback

);

Parameters

languages[]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not

recommend adding more than two recognition languages to the list.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

cjkPatterns

[in] The zero-terminated list of pointers to the patterns for CJK languages.

dictionaries[]

[in] The zero-terminated list of dictionaries as an array of TFineDictionaryPtr variables.

image

[in] The image to be recognized as a CFineImage variable.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants that define the image processing

parameters.

recMode

[in] The TFineRecognitionMode constant that sets the recognition mode.

confidenceLevel

[in] The TFineRecognitionConfidenceLevel constant that sets the recognition confidence level.

layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable that describes the

recognized text. This pointer must be released afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant that specifies the rotation angle of an input image before recognition if the

FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.

Note: The recognized text coordinates correspond to a rotated image.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 35

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document

layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages

Working with Dictionaries

FineRecognizeRegion Function

This function recognizes all text lines in the specified region. A region is an array of bounding rectangles. Each

rectangle represents one text line. This function is useful when you need to recognize a specific business card field

with the help of a custom dictionary.
C Syntax

TFineErrorCode FineRecognizeRegion(

 const TLanguageID languages[],

 const TFinePatternsPtr patterns,

 const TFinePatternsPtr* cjkPatterns,

 const TFineDictionaryPtr dictionaries[],

 const CFineImage* image,

 int regionLength,

 const RECT* regionRects,

 TFineImageProcessingOptions imageProcessingOptions,

 TFineRecognitionMode recMode,

 TFineRecognitionConfidenceLevel confidenceLevel,

 CFineLayout** layoutBuff,

 TFineRotationType* rotation,

 TFineProgressCallbackFunction progressCallback,

 TFinePrebuiltDataCallbackFunction prebuiltDataCallback

);

Parameters

languages[]

[in] The list of language IDs as an array of the TLanguageID constants terminated by LID_Undefined. We do not

recommend adding more than two recognition languages to the list.

patterns

[in] The address of patterns as a TFinePatternsPtr variable.

cjkPatterns

[in] The zero-terminated list of pointers to the patterns for CJK languages.

dictionaries[]

[in] The zero-terminated list of dictionaries as an array of the TFineDictionaryPtr variables.

image

[in] The image to be recognized as a CFineImage variable.

regionLength

[in] The number of rectangles of the specified region.

regionRects

ABBYY Mobile OCR Engine 4: Native Library API Reference

 36

[in] The array of rectangles of the specified region.

imageProcessingOptions

[in] OR combination of the TFineImageProcessingOptionsFlags constants which define the image processing

parameters.

recMode

[in] The TFineRecognitionMode constant which sets the recognition mode.

confidenceLevel

[in] The TFineRecognitionConfidenceLevel constant which sets the recognition confidence level.

layoutBuff

[out] A pointer to pointer variable that receives the interface pointer of a CFineLayout variable which describes the

recognized text. This pointer must be released afterwards with the help of the FineFreeMemory function.

rotation

[out] The TFineRotationType constant which specifies the rotation angle of an input image before recognition if the

FIPO_DetectPageOrientation flag is set in the imageProcessingOptions parameter, otherwise, it contains 0.

Note: The recognized text coordinates correspond to a rotated image.

progressCallback

[in] The TFineProgressCallbackFunction callback function that delivers the progress information. It can be 0.

prebuiltDataCallback

[in] The TFinePrebuiltDataCallbackFunction callback function that delivers the information about the document

layout, text blocks and lines before the text recognition. It can be 0.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

Working with Languages

Working with Dictionaries

FineSetLicenseInfo Function

This function sets the license information. The ABBYY Mobile OCR Engine license file has to be loaded to the memory

and set with the help of this function.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each

third recognized business card.
C Syntax

TFineErrorCode FineSetLicenseInfo(const CFineLicenseInfo* licenseInfo);

Parameters

licenseInfo

[in] A constant pointer to the CFineLicenseInfo variable containing the license information.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineGetLicenseInfo

How to Use the Native Library

ABBYY Mobile OCR Engine 4: Native Library API Reference

 37

FineSetRecognizerThreadsCount Function

This function is used to limit the number of threads that can be started simultaneously for multi-threaded processing

with ABBYY Mobile OCR Engine.

By default, all recognition operations are performed in parallel, using up to 4 threads. Call this function after the

library is initialized if you need to change this limitation.

Note: For multi-threaded processing the Pthreads-win32 library is used. This library is included in the distribution as a

separate dynamic link library (pthreadVC2.dll).
C Syntax

TFineErrorCode FineSetRecognizerThreadsCount(int threadsCount);

Parameters

threadsCount

[in] The maximum number of threads that can be run at once.

Return value

The function returns the standard return values of ABBYY Mobile OCR Engine functions.

See also

FineInitialize

How to Use the Native Library

Callback Functions

This section contains:
• TFinePrebuiltDataCallbackFunction

• TFineProgressCallbackFunction

TFinePrebuiltDataCallbackFunction

A pointer to the callback function that should be implemented on the client side. It delivers to the client the prebuilt

information about the document layout, text blocks and lines before the text recognition.
C Syntax

typedef void (*TFinePrebuiltDataCallbackFunction)(

 TFinePrebuiltDataType dataType,

 void* data

);

Parameters

dataType

[in] A TFinePrebuiltDataType constant that specifies the pointer type to which the data parameter should be cast.

data

[in] A pointer to a structure with prebuilt data of the type that is specified in the dataType parameter.

Return value

This function returns zero to break recognition process.

See also

FineAnalyzeImage

FineRecognizeBlocks

FineRecognizeImage

FineRecognizeRegion

FineRecognizeBusinessCard

ABBYY Mobile OCR Engine 4: Native Library API Reference

 38

TFineProgressCallbackFunction

This is a callback function that should be implemented on the client side. It delivers to the client the information

about the approximate percentage of analysis or recognition and warnings or errors that have occurred during

processing.
C Syntax

int (*TFineProgressCallbackFunction)(

 int processedPercentage,

 DWORD warning,

 void* warningData

);

Parameters

processedPercentage

[in] The percentage of the current work which has already been done. It is in the range from 0 to 100.

warning

[in] The constant of the TFineWarningCode enumeration which describes the warning which has occurred during

processing.

warningData

[in] A pointer to data structure with the details of the warning. Its contents depend on the type of the warning. See

the description of the TFineWarningCode constants for details.

Return value

If this function returns zero, the recognition is cancelled.

Sample

Here is a sample implementation of the callback function:

int TFineProgressCallbackFunction(int processedPercentage, DWORD warning, void*

warningData)

{

 fprintf(TraceFile, "%d%% of the work is done.\n", processedPercentage);

 if(warning == FWC_ProbablyBadImage) {

 fprintf(TraceFile, "The image quality is too low.\n");

 }

 if(processedPercentage < 50 && (warning == FWC_SlowRecognition) != 0) {

 return 0;

 } else {

 return 1;

 }

}

See also

FineAnalyzeImage

FinePrebuildWordsInfo

FineRecognizeBlocks

FineRecognizeImage

FineRecognizeRegion

FineRecognizeBusinessCard

ABBYY Mobile OCR Engine 4: Native Library API Reference

 39

Custom Memory Management Functions

ABBYY Mobile OCR Engine provides the FineAllocMemory and FineFreeMemory functions to deal with memory

management. However, if you need to use special allocation-deallocation algorithms, you can implement your own

functions:
• TFineAllocMemoryFunction

• TFineFreeMemoryFunction

These pointers to functions allow you to use your own algorithms for memory allocation and release. When initializing

the library, pass the pointers to the functions you implemented as input parameters to the FineInitialize function,

and the internal memory operations will be executed using these functions.

See also

FineInitialize

TFineAllocMemoryFunction Function

This function is implemented on the client side and allows you to use your preferred memory management algorithm.

It is used to allocate memory.
C Syntax

void* (*TFineAllocMemoryFunction)(int size);

Parameters

size

[in] The size of memory buffer that needs to be allocated.

Return value

The function returns the address to the allocated memory buffer.

See also

TFineFreeMemoryFunction

FineAllocMemory

TFineFreeMemoryFunction Function

This function is implemented on the client side and allows you to use your preferred memory management algorithm.

It releases memory allocated by the call to TFineAllocMemoryFunction.
C Syntax

void (*TFineFreeMemoryFunction)(void* ptr);

Parameters

ptr

[in] A pointer to memory which must be released.

Return value

The function does not have a return value.

See also

TFineAllocMemoryFunction

FineFreeMemory

ABBYY Mobile OCR Engine 4: Native Library API Reference

 40

Structures
This section contains the description of ABBYY Mobile OCR Engine structures:

• CFineAngle

• CFineBarcode

• CFineBcrField

• CFineBcrFieldComponent

• CFineBusinessCard

• CFineImage

• CFineImageFile

• CFineImageInputStream

• CFineImageTransformationInfo

• CFineLayout

• CFineLicenseInfo

• CFinePrebuiltLayoutInfo

• CFinePrebuiltTextBlockInfo

• CFinePrebuiltTextLineInfo

• CFineRects

• CFineTextBlock

• CFineTextCharacter

• CFineTextLine

• CFineWarningDataWrongLanguages

• CFineWordInfo

• CFineWordSuggestion

• CFineWordVariant

CFineAngle Structure

This structure describes the value of the angle tangent.
C Syntax

typedef struct tagCFineAngle{

 int Numerator;

 int Denominator;

} CFineAngle;

Fields

Name Type Description

Denominator int Stores the denominator of the angle tangent.

Numerator int Stores the numerator of the angle tangent.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 41

See also

CFineImageTransformationInfo

CFineBarcode Structure

This structure describes the result of the barcode recognition.
C Syntax

typedef struct tagCFineBarcode {

 TFineBarcodeType Type;

 CFineTextLine TextLine;

} CFineBarcode;

Fields

Name Type Description

TextLine CFineTextLine Stores the recognized text of the barcode.

Type TFineBarcodeType Stores the barcode type.

Output parameter

This structure is the output parameter of the FineRecognizeBarcode function.

See also

CFineLayout

CFineBcrField Structure

This structure represents a business card field.
C Syntax

typedef struct tagCFineBcrField {

 TBcrFieldType Type;

 int TextLinesCount;

 CFineTextLine* TextLines;

 int ComponentsCount;

 CFineBcrFieldComponent* Components;

} CFineBcrField;

Fields

Name Type Description

Components CFineBcrFieldComponent* Stores the field components. The field

components are stored in the order of

appearance on the business card.

ComponentsCount int Stores the number of field components. It is zero

if the field is not divided.

TextLines CFineTextLine* Stores recognized text in the card field. It may

contain several lines.

TextLinesCount int Stores the number of text lines in the card field.

Type TBcrFieldType Stores the type of a business card field.

See also

CFineBusinessCard

ABBYY Mobile OCR Engine 4: Native Library API Reference

 42

CFineBusinessCard Structure

This structure represents a business card.
C Syntax

typedef struct tagCFineBusinessCard {

 CFineBcrField* Fields;

 int FieldsCount;

} CFineBusinessCard;

Fields

Name Type Description

Fields CFineBcrField* Stores the array of business card fields.

FieldsCount int Stores the number of fields.

Output parameter

This structure is the output parameter of the FineAnalyzeTextAsBusinessCard, FineRecognizeBusinessCard

functions.

CFineBusinessCard Structure

This structure represents a business card.
C Syntax

typedef struct tagCFineBusinessCard {

 CFineBcrField* Fields;

 int FieldsCount;

} CFineBusinessCard;

Fields

Name Type Description

Fields CFineBcrField* Stores the array of business card fields.

FieldsCount int Stores the number of fields.

Output parameter

This structure is the output parameter of the FineAnalyzeTextAsBusinessCard, FineRecognizeBusinessCard

functions.

CFineImage Structure

This structure represents the image. ABBYY Mobile OCR Engine supports the following formats:
• black and white – 1 bit-per-pixel (bpp) image, where 0 is black and 1 is white;

• grey – 8 bpp image, where 0 is black and 255 is white;

• color – 24 bpp image. The byte order is BGR, therefore (0,0,0) is black and (255,255,255) is white.

C Syntax

typedef struct tagCFineImage {

 int ImageWidth;

 int ImageHeight;

 int ImageByteWidth;

 int BitsPerPixel;

 int Resolution;

 BYTE* Image;

} CFineImage;

ABBYY Mobile OCR Engine 4: Native Library API Reference

 43

Fields

Name Type Description

BitsPerPixel int Stores the number of bits used for one pixel. It should be 1 for black and

white image, 8 for gray, 24 for color.

Image BYTE* Stores the image bitmap line-by-line, from top to bottom. Each line starts

at the BYTE boundary.

ImageByteWidth int Stores the number of bytes occupied by each raster line. The value of this

field should be at least the smallest integer greater than or equal to

(ImageWidth * BitsPerPixel/8).

ImageHeight int Stores the height of the image in pixels.

ImageWidth int Stores the width of the image in pixels.

Resolution int Stores the horizontal and vertical resolution in dpi.

Input parameter

This structure is passed as an input parameter to the FineAnalyzeImage, FineGetTextLines, FinePrebuildWordsInfo,

FinePreprocessImage, FineRecognizeBarcode, FineRecognizeBlocks, FineRecognizeBusinessCard,

FineRecognizeImage, FineRecognizeRegion functions.

Output parameter

This structure is the output parameter of the FineLoadImageFromFile, FineLoadImageFromInputStream

function.

CFineImageFile Structure

This structure contains methods for loading an image from a file.
C Syntax

typedef struct tagCFineImageFile {

 int (*Read)(void* file, BYTE* buffer, int size);

 int (*Seek)(void* file, int offset, TFineImageFileSeekPosition from);

 int (*GetLength)(void* file);

} CFineImageFile;

Methods

Name Description

GetLength Returns the file size in bytes.

Read Reads an image from a file.

Seek Sets the position indicator associated with the file to a new position.

Input parameter

This structure is passed as an input parameter to the FineLoadImageFromFile function.

GetLength Method of CFineImageFile Structure

This method returns the size of the image file in bytes.
C Syntax

int (*GetLength)(void* file);

Parameters

file

A pointer to the CFineImageFile object.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 44

Return value

It returns the file size in bytes.

See also

CFineImageFile

Read Method of CFineImageFile Structure

This method loads an image from a file into memory.
C Syntax

int (*Read)(

 void* file,

 BYTE* buffer,

 int size

);

Parameters

file

A pointer to the CFineImageFile object.

buffer

A pointer to the area of memory which receives the data from the file.

size

The size of the data that will be stored in the buffer parameter.

Return value

It returns the number of the loaded bytes. The return value can be less than the size parameter. If the value is less or

equal to zero, no data have been loaded.

See also

CFineImageFile

Seek Method of CFineImageFile Structure

This method sets the position indicator associated with the file to a new position.
C Syntax

int (*Seek)(

 void* file,

 int offset,

 TFineImageFileSeekPosition from

);

Parameters

file

A pointer to the CFineImageFile object.

offset

A value to which the position indicator should be set or incremented.

from

A constant from the TFineImageFileSeekPosition enumeration that specifies whether the position indicator should

be set to or incremented by the offset parameter.

Return value

It returns zero if a new position is set successfully; otherwise, non-zero value that is interpreted as an error.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 45

See also

CFineImageFile

CFineImageInputStream Structure

This structure contains methods for loading an image from the input stream.
C Syntax

typedef struct tagCFineImageInputStream {

 int (*Read)(void* inputStream, BYTE* buffer, int size);

 int (*Skip)(void* inputStream, int size);

} CFineImageInputStream;

Methods

Name Description

Read Reads an image from the input stream.

Skip Skips the specified number of bytes from the input stream.

Input parameter

This structure is passed as an input parameter to the FineLoadImageFromInputStream function.

Read Method of CFineImageInputStream Structure

This method loads an image from the input stream.
C Syntax

int (*Read)(

 void* inputStream,

 BYTE* buffer,

 int size

);

Parameters

inputStream

A pointer to the CFineImageInputStream object.

buffer

Data from the input stream is written to this parameter.

size

The size of the loading data that are stored in the buffer parameter.

Return value

It returns the number of the loaded bytes. The return value can be less than the size parameter. If the value is less or

equal to zero, no data have been loaded.

See also

CFineImageInputStream

Skip Method of CFineImageInputStream Structure

This method skips the specified number of bytes from the input stream.

Note: A pointer to the Skip function can be zero, in this case, the Read function is used.
C Syntax

int (*Skip)(

 void* inputStream,

ABBYY Mobile OCR Engine 4: Native Library API Reference

 46

 int size

);

Parameters

inputStream

A pointer to the CFineImageInputStream object.

size

The size of the skipped data in bytes.

Return value

It returns the number of the skipped bytes that should be equal to the size parameter. If the value does not equal to

the size parameter, it is interpreted as a reading error.

See also

CFineImageInputStream

CFineImageTransformationInfo Structure

This structure stores information about the image transformation.
C Syntax

typedef struct tagCFineImageTransformationInfo {

 CFineAngle SkewAngle;

} CFineImageTransformationInfo;

Fields

Name Type Description

SkewAngle CFineAngle Stores the value of the skew angle tangent.

Output parameter

This structure is the output parameter of the FinePreprocessImage function.

CFineLayout Structure

This structure describes the recognition result of an image. It can contain a set of text blocks with the recognized text

and a set of barcode blocks with the recognized barcodes.
C Syntax

typedef struct tagCFineLayout {

 CFineTextBlock* TextBlocks;

 int TextBlocksCount;

 CFineBarcode* BarcodeBlocks;

 int BarcodeBlocksCount;

} CFineLayout;

Fields

Name Type Description

BarcodeBlocks CFineBarcode* The pointer to the array of barcode blocks found on the

image.

BarcodeBlocksCount int The number of barcode blocks.

TextBlocks CFineTextBlock* The pointer to the array of text blocks found on the

image.

TextBlocksCount int The number of text blocks.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 47

Input parameter

This structure is passed as an input parameter to the FineAnalyzeTextAsBusinessCard function.

Output parameter

This structure is the output parameter of the FineAnalyzeImage, FineExtractBarcodes, FineRecognizeImage,

FineRecognizeRegion functions.

CFineLicenseInfo Structure

This structure defines license information.
C Syntax

typedef struct tagCFineLicenseInfo {

 BYTE* LicenseData;

 DWORD DataLength;

 const WCHAR* ApplicationId;

} CFineLicenseInfo;

Fields

Name Type Description

ApplicationId WCHAR* Stores a string with application identification.

Important! The ApplicationId must correspond to the application ID in

the license file. If you do not know your application ID, contact your sales

manager.

DataLength DWORD Stores the length of the data loaded from the license file.

LicenseData BYTE* Stores a pointer to the memory buffer that contains data loaded from the

license file.

Input parameter

This structure is passed as an input parameter to the FineSetLicenseInfo function.

CFinePrebuiltLayoutInfo Structure

This structure stores information about the document layout. The information is available before the text recognition.
C Syntax

typedef struct tagCFinePrebuiltLayoutInfo {

 CFinePrebuiltTextBlockInfo* TextBlocks;

 int TextBlocksCount;

} CFinePrebuiltLayoutInfo;

Fields

Name Type Description

TextBlocks CFinePrebuiltTextBlockInfo* Stores a pointer to an array of the

CFinePrebuiltTextBlockInfo objects with

information about the text blocks.

TextBlocksCount int Stores the number of elements in the

TextBlocks field.

Input parameter

This structure is passed as an input parameter to the TFinePrebuiltDataCallbackFunction if the dataType

argument is set to FPDT_WordsInfo.

Output parameter

This structure is the output parameter of the FinePrebuildWordsInfo function.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 48

CFinePrebuiltTextBlockInfo Structure

This structure stores information about the text block. The information is available before the text recognition.
C Syntax

typedef struct tagCFinePrebuiltTextBlockInfo {

 RECT* RegionRects;

 int RegionRectsCount;

 CFinePrebuiltTextLineInfo* Lines;

 int LinesCount;

} CFinePrebuiltTextBlockInfo;

Fields

Name Type Description

Lines CFinePrebuiltTextLineInfo* Stores a pointer to an array of the

CFinePrebuiltTextLineInfo objects with

information about the text lines in the text

block.

LinesCount int Stores the number of elements in the Lines

field.

RegionRects RECT* Stores a pointer to an array of the rectangles

that describe an image region with the text

block.

RegionRectsCount int Stores the number of elements in the

RegionRects field.

See also

CFinePrebuiltLayoutInfo

CFinePrebuiltTextLineInfo Structure

This structure stores information about the text line. The information is available before the text recognition.
C Syntax

typedef struct tagCFinePrebuiltTextLineInfo {

 RECT Rect;

 RECT* WordsRects;

 int WordsRectsCount;

} CFinePrebuiltTextLineInfo;

Fields

Name Type Description

Rect RECT Stores the bounding rectangle of the line.

WordsRects RECT* Stores a pointer to an array of the bounding rectangles of words in the

line.

WordsRectsCount int Stores the number of elements in the WordsRects field.

See also

CFinePrebuiltTextBlockInfo

CFineRects Structure

This structure describes an array of rectangles.
C Syntax

typedef struct tagCFineRects {

 RECT* Rects;

ABBYY Mobile OCR Engine 4: Native Library API Reference

 49

 int RectsCount;

} CFineRects;

Fields

Name Type Description

Rects RECT* Stores the pointer to an array of rectangles.

RectsCount int Stores the number of rectangles in array.

Output parameter

This structure is the output parameter of the FineGetTextLines function.

CFineTextBlock Structure

This structure describes a block of the recognized text.
C Syntax

typedef struct tagCFineTextBlock {

 CFineTextLine* Lines;

 int LinesCount;

 RECT* RegionRects;

 int RegionRectsCount;

 DWORD Attributes

} CFineTextBlock;

Fields

Name Type Description

Attributes DWORD Stores the attributes of the text block as the OR combination

of the TFineTextBlockAttributes constants.

Lines CFineTextLine* Stores the pointer to an array of text lines.

LinesCount int Stores the number of text lines.

RegionRects RECT* Stores the pointer to an array of rectangles which describes

the region of text block. A region is a set of rectangles

positioned one under another in such a way that the top line

of the lower rectangle is the bottom line of the upper one (so

that the rectangles do not overlap).

RegionRectsCount int Stores the number of region rectangles.

Input parameter

An array of objects of this type is passed as an input parameter to the FineRecognizeBlocks function.

See also

CFineLayout

CFineTextCharacter Structure

This structure describes a character in the recognized text.
C Syntax

typedef struct tagCFineTextCharacter {

 WCHAR Unicode;

 WORD SmallLetterHeight;

 RECT Rect;

 DWORD Attributes;

 BYTE Quality;

} CFineTextCharacter;

ABBYY Mobile OCR Engine 4: Native Library API Reference

 50

Fields

Name Type Description

Attributes DWORD The OR combination of the TFineCharacterAttributes constants

which specifies the attributes detected for this character.

Rect RECT Stores the bounding rectangle of a character or ligature.

SmallLetterHeight WORD Stores the height of a small letter for the detected font.

Quality BYTE Stores the character recognition quality. The value of this field must

be in the range from FTCQ_Min to FTCQ_Max.

Unicode WCHAR Stores the character code in the Unicode standard.

CFineTextLine Structure

This structure describes a line of the recognized text.
C Syntax

typedef struct tagCFineTextLine {

 CFineTextCharacter* Chars;

 int CharCount;

 CFineWordInfo* Words;

 int WordsCount;

 RECT Rect;

 int BaseLine;

} CFineTextLine;

Fields

Name Type Description

BaseLine int Stores the coordinate of the base line.

Chars CFineTextCharacter* Stores a pointer to characters buffer.

CharCount int Stores the number of characters in the line.

Rect RECT Stores the bounding rectangle of the line.

Note: For barcode recognition this field is empty.

Words CFineWordInfo* Stores a pointer to an array of the CFineWordInfo objects

with the word information structures. This field is available if

the FIPO_BuildWordsInfo flag is passed to the recognition

function.

WordsCount int Stores the number of elements in the Words field.

See also

CFineBarcode

CFineWordInfo

CFineTextCharacter

CFineWarningDataWrongLanguages Structure

This structure defines an array of recommended recognition languages. A pointer to this structure will be stored in the

warningData parameter of the TFineProgressCallbackFunction when the warning which occurred is

FWC_ProbablyWrongLanguages.
C Syntax

typedef struct tagCFineWarningDataWrongLanguages {

 TLanguageID* RecommendedLanguages;

 int RecommendedLanguagesCount;

} CFineWarningDataWrongLanguages;

ABBYY Mobile OCR Engine 4: Native Library API Reference

 51

Fields

Name Type Description

RecommendedLanguages TLanguageID* Stores a pointer to an array of

recommended recognition language IDs.

RecommendedLanguagesCount int Stores the number of recommended languages.

Output parameter

This structure is the output parameter of the TFineProgressCallbackFunction when the warning which occurred is

FWC_ProbablyWrongLanguages.

CFineWordInfo Structure

This structure represents information related to a part of text after splitting the text into words.
C Syntax

typedef struct tagCFineWordInfo {

 CFineWordVariant* Variants;

 int VariantsCount;

 DWORD Attributes;

 RECT Rect;

 DWORD SmallLetterHeight;

} CFineWordInfo;

Fields

Name Type Description

Attributes DWORD The OR combination of the TFineWordAttributes

constants which specifies to which word model this part

of text conforms.

Rect RECT The bounding rectangle of the part of the text.

Note: If the Attributes field has the

FWA_HyphenatedWord flag, this field should be ignored.

SmallLetterHeight DWORD The medium height of small letters of the word.

Variants CFineWordVariant* An array of the word and its derivatives. This array

contains at least one word that is the recognized word as

is.

VariantsCount int The number of elements in the Variants field.

See also

CFineTextLine

CFineWordVariant

CFineWordSuggestion Structure

This structure defines an array of word suggestions.
C Syntax

typedef struct tagCFineWordSuggestion {

 WCHAR** Words;

 int WordsCount;

} CFineWordSuggestion;

Fields

Name Type Description

Words WCHAR** Stores a pointer to an array of words. A word is Unicode and zero-

terminated.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 52

WordsCount int Stores the number of words.

Output parameter

This structure is the output parameter of the FineGetWordSuggest function.

CFineWordVariant Structure

This structure defines the recognized word or its derivatives (primary form and corrections of the word).
C Syntax

typedef struct tagCFineWordVariant {

 WCHAR* Chars;

 int CharCount;

 TLanguageID* WordLanguages;

 int WordLanguagesCount;

 TFineWordVariantType Type;

} CFineWordVariant;

Fields

Name Type Description

Chars WCHAR* The string containing the word variant.

CharCount int The length of the word variant.

Type TFineWordVariantType The type of the word variant.

WordLanguages TLanguageID* The languages to which the word belongs.

WordLanguagesCount int The number of elements in the

WordLanguages field.

See also

CFineWordInfo

Enumerations
This section contains:

• BIT_FLAG Macros

• TBcrComponentType

• TBcrFieldType

• TFineBarcodeOrientation

• TFineBarcodeSupplement

• TFineBarcodeType

• TFineCharacterAttributes

• TFineErrorCode

• TFineImageFileSeekPosition

• TFineImageLoadingOptionsFlags

• TFineImageProcessingOptionsFlags

• TFinePrebuiltDataType

ABBYY Mobile OCR Engine 4: Native Library API Reference

 53

• TFineRecognitionConfidenceLevel

• TFineRecognitionMode

• TFineRotationType

• TFineSupportedCodepage

• TFineTextBlockAttributes

• TFineTextCharacterQuality

• TFineWarningCode

• TFineWordAttributes

• TFineWordVariantType

• TLanguageID

BIT_FLAG Macros

This macros returns a number with one non-zero bit in the n position.
C Syntax

BIT_FLAG(n) (1 << (n))

See also

TFineCharacterAttributes

TFineWarningCode

TFineImageProcessingOptionsFlags

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineCharacterAttributes {

 FCA_Italic = BIT_FLAG(0),

 FCA_Bold = BIT_FLAG(1),

 FCA_Underlined = BIT_FLAG(2),

 FCA_Strikethrough = BIT_FLAG(3),

 FCA_Smallcaps = BIT_FLAG(4),

 FCA_Superscript = BIT_FLAG(5),

 FCA_Uncertain = BIT_FLAG(16),

 FCA_BarcodeBinaryDataHexed = BIT_FLAG(17),

 FCA_BarcodeBinaryZero = BIT_FLAG(18),

 FCA_BarcodeStartStopSymbol = BIT_FLAG(19),

} TFineCharacterAttributes;

Elements

Name Description

FCA_Italic Specifies whether the character is italic.

FCA_Bold Specifies whether the character is bold.

FCA_Underlined Specifies whether the character is underlined.

FCA_Strikethrough Specifies whether the character is strikeout.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 54

FCA_Smallcaps Specifies whether the character has the "small caps" style. This means

that the small characters are displayed as small capitals.

FCA_Superscript Specifies whether the character is superscript.

FCA_Uncertain Specifies whether the character has been recognized uncertainly. The

confidence level at which characters are marked as uncertain must be

set during recognition as a TFineRecognitionConfidenceLevel

constant.

FCA_BarcodeBinaryDataHexed Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero Specifies a zero binary symbol replaced by character that is specified in

the FineRecognizeBarcode function as unknownLetter for correct

representation.

FCA_BarcodeStartStopSymbol Specifies the start and stop symbols. This flag is valid for Code39 and

Codabar barcodes.

See also

CFineTextCharacter

TBcrFieldType

TBcrFieldType enumeration constants are used to describe different types of business card fields.

typedef enum tagTBcrFieldType {

 BFT_Phone,

 BFT_Fax,

 BFT_Mobile,

 BFT_Email,

 BFT_Web,

 BFT_Address,

 BFT_Name,

 BFT_Company,

 BFT_Job,

 BFT_Text,

 BFT_Count

} TBcrFieldType;

Elements

Name Description

BFT_Phone A phone number.

BFT_Fax A fax number.

BFT_Mobile A cell phone number.

BFT_Email An e-mail address.

BFT_Web A web address.

BFT_Address A post address.

BFT_Name A full name.

BFT_Company A company name.

BFT_Job A job title.

BFT_Text The recognized text.

BFT_Count The auxiliary constant which stores the number of constants in the enumeration.

See also

CFineBcrField

ABBYY Mobile OCR Engine 4: Native Library API Reference

 55

TFineBarcodeOrientation

TFineBarcodeOrientation enumeration constants are used to set the barcode orientation in the

FineRecognizeBarcode function. The constants are defined using the BIT_FLAG macros or as a combination.

typedef enum tagTFineBarcodeOrientation {

 FBO_LeftToRight = BIT_FLAG(0),

 FBO_DownToTop = BIT_FLAG(1),

 FBO_RightToLeft = BIT_FLAG(2),

 FBO_TopToDown = BIT_FLAG(3),

 FBO_AutoDetect = FBO_LeftToRight | FBO_DownToTop | FBO_RightToLeft | FBO_TopToDown

} TFineBarcodeOrientation;

Flag

Name Description

FBO_LeftToRight Barcode is oriented from left to right.

FBO_DownToTop Barcode is oriented from down to top.

FBO_RightToLeft Barcode is oriented from right to left.

FBO_TopToDown Barcode is oriented from top to down.

FBO_AutoDetect The barcode orientation will be detected automatically.

See also

FineRecognizeBarcode

TFineBarcodeSupplement

TFineBarcodeSupplement enumeration constants are used to set the barcode supplement in the

FineRecognizeBarcode function. The constants are defined using the BIT_FLAG macros or as a combination.

typedef enum tagTFineBarcodeSupplement {

 FBS_Void = BIT_FLAG(0),

 FBS_2Digit = BIT_FLAG(1),

 FBS_5Digit = BIT_FLAG(2),

 FBS_AutoDetect = FBS_Void | FBS_2Digit | FBS_5Digit,

 FBS_AnySupplement = FBS_2Digit | FBS_5Digit

} TFineBarcodeSupplement;

Flag

Name Description

FBS_Void The empty supplement.

FBS_2Digit The 2-digit supplement.

FBS_5Digit The 5-digit supplement.

FBS_AutoDetect Forces ABBYY Mobile OCR Engine to automatically detect the barcode type during

recognition.

FBS_AnySupplement Combination of all non-empty supplements.

See also

FineRecognizeBarcode

ABBYY Mobile OCR Engine 4: Native Library API Reference

 56

TFineBarcodeType

TFineBarcodeType enumeration constants are used to set the barcode type in the FineRecognizeBarcode

function. The constants are defined using the BIT_FLAG macros or as a combination.

typedef enum tagTFineBarcodeType {

 FBT_Unrecognized = 0,

 FBT_Code39 = BIT_FLAG(0),

 FBT_Interleaved25 = BIT_FLAG(1),

 FBT_Ean13 = BIT_FLAG(2),

 FBT_Code128 = BIT_FLAG(3),

 FBT_Ean8 = BIT_FLAG(4),

 FBT_Pdf417 = BIT_FLAG(5),

 FBT_Codabar = BIT_FLAG(6),

 FBT_Upce = BIT_FLAG(7),

 FBT_Industrial25 = BIT_FLAG(8),

 FBT_Iata25 = BIT_FLAG(9),

 FBT_Matrix25 = BIT_FLAG(10),

 FBT_Code93 = BIT_FLAG(11),

 FBT_Postnet = BIT_FLAG(12),

 FBT_Ucc128 = BIT_FLAG(13),

 FBT_Patch = BIT_FLAG(14),

 FBT_Aztec = BIT_FLAG(15),

 FBT_Datamatrix = BIT_FLAG(16),

 FBT_Qrcode = BIT_FLAG(17),

 FBT_Upca = BIT_FLAG(18),

 FBT_Maxicode = BIT_FLAG(19),

 FBT_Any1D = FBT_Code39 | FBT_Interleaved25 |

 FBT_Ean13 | FBT_Code128 | FBT_Ean8 | FBT_Codabar |

 FBT_Upce | FBT_Industrial25 | FBT_Iata25 |

 FBT_Matrix25 | FBT_Code93 | FBT_Ucc128 |

 FBT_Patch | FBT_Postnet | FBT_Upca,

 FBT_Square2D = FBT_Aztec | FBT_Datamatrix | FBT_Qrcode | FBT_Maxicode,

 FBT_Any1DWithSupplement = FBT_Ean13 | FBT_Ean8 | FBT_Upce | FBT_Upca

} TFineBarcodeType;

Flag

Name Description

FBT_Unrecognized Denotes unrecognized type of barcode. It is used as the return value if

ABBYY Mobile OCR Engine has failed to detect the type of barcode.

FBT_Code39 Barcode in Code 39 standard.

FBT_Interleaved25 Barcode in Interleaved 2 of 5 standard.

FBT_Ean13 Barcode in EAN-13 standard.

FBT_Code128 Barcode in Code 128 standard.

FBT_Ean8 Barcode in EAN-8 standard.

FBT_Pdf417 Barcode in PDF417 standard.

FBT_Codabar Barcode in Codabar standard.

FBT_Upce Barcode in UPC-E standard.

FBT_Industrial25 Barcode in Industrial 2 of 5 standard.

FBT_Iata25 Barcode in IATA 2 of 5 standard.

FBT_Matrix25 Barcode in Matrix 2 of 5 standard.

FBT_Code93 Barcode in Code 93 standard.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 57

FBT_Postnet Barcode in Postnet standard.

FBT_Ucc128 Barcode in GS1-128 standard. The former name was UCC-128.

FBT_Patch Barcode in Patch standard.

FBT_Aztec Barcode in Aztec standard.

FBT_Datamatrix Barcode in Data Matrix standard.

FBT_Qrcode Barcode in QR Code standard.

FBT_Upca Barcode in UPC-A standard.

FBT_Maxicode Barcode in MaxiCode standard.

FBT_Any1D Combination of all one-dimensional barcodes.

FBT_Square2D Combination of all two-dimensional barcodes.

FBT_Any1DWithSupplement Combination of all one-dimensional barcodes that can have a supplement.

See also

CFineBarcode

FineRecognizeBarcode

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineCharacterAttributes {

 FCA_Italic = BIT_FLAG(0),

 FCA_Bold = BIT_FLAG(1),

 FCA_Underlined = BIT_FLAG(2),

 FCA_Strikethrough = BIT_FLAG(3),

 FCA_Smallcaps = BIT_FLAG(4),

 FCA_Superscript = BIT_FLAG(5),

 FCA_Uncertain = BIT_FLAG(16),

 FCA_BarcodeBinaryDataHexed = BIT_FLAG(17),

 FCA_BarcodeBinaryZero = BIT_FLAG(18),

 FCA_BarcodeStartStopSymbol = BIT_FLAG(19),

} TFineCharacterAttributes;

Elements

Name Description

FCA_Italic Specifies whether the character is italic.

FCA_Bold Specifies whether the character is bold.

FCA_Underlined Specifies whether the character is underlined.

FCA_Strikethrough Specifies whether the character is strikeout.

FCA_Smallcaps Specifies whether the character has the "small caps" style. This means

that the small characters are displayed as small capitals.

FCA_Superscript Specifies whether the character is superscript.

FCA_Uncertain Specifies whether the character has been recognized uncertainly. The

confidence level at which characters are marked as uncertain must be

set during recognition as a TFineRecognitionConfidenceLevel

constant.

FCA_BarcodeBinaryDataHexed Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero Specifies a zero binary symbol replaced by character that is specified in

ABBYY Mobile OCR Engine 4: Native Library API Reference

 58

the FineRecognizeBarcode function as unknownLetter for correct

representation.

FCA_BarcodeStartStopSymbol Specifies the start and stop symbols. This flag is valid for Code39 and

Codabar barcodes.

See also

CFineTextCharacter

TFineImageFileSeekPosition

TFineImageFileSeekPosition enumeration constants are used in the from parameter of the Seek method of the

CFineImageFile structure.

typedef enum tagTFineImageFileSeekPosition {

 FIFSP_Begin,

 FIFSP_Current,

} TFineImageFileSeekPosition;

Flag

Name Description

FIFSP_Begin Specifies that the from parameter should equal the offset parameter.

FIFSP_Current Specifies that the from parameter should be incremented to the offset parameter.

See also

CFineImageFile::Seek

TFineImageLoadingOptionsFlags

TFineImageLoadingOptionsFlags enumeration constants are used to set the input parameter of the

FineLoadImageFromFile and FineLoadImageFromInputStream functions. Some of the constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineImageLoadingOptionsFlags{

 FILO_Default = 0,

 FILO_ApplyExifOrientation = BIT_FLAG(0),

 FILO_CropUsingRelativeCoordinates = BIT_FLAG(1)

} TFineImageLoadingOptionsFlags;

Flag

Name Description

FILO_Default Specifies that an image is loaded as is, ignoring any metadata, and

the crop rectangle coordinates are in pixels.

FILO_ApplyExifOrientation Specifies that the EXIF orientation information is applied to the

image.

FILO_CropUsingRelativeCoordinates Specifies that the crop rectangle coordinates are in the ten

thousandth of the original image size.

See also

FineLoadImageFromFile

FineLoadImageFromInputStream

TFineImageProcessingOptionsFlags

TFineImageProcessingOptionsFlags enumeration constants are used to set the input parameter of the

FinePreprocessImage function. Some of the constants are defined using the BIT_FLAG macros.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 59

typedef enum tagTFineImageProcessingOptionsFlags{

 FIPO_Default = 0,

 FIPO_DisableDeskew = BIT_FLAG(0),

 FIPO_DisableImageGeometricTransform = FIPO_DisableDeskew,

 FIPO_DetectPageOrientation = BIT_FLAG(1),

 FIPO_HasCjk = BIT_FLAG(4),

 FIPO_FindAllText = BIT_FLAG(5),

 FIPO_IsEuropeanWithSomeCjk = BIT_FLAG(6),

 FIPO_ProhibitVerticalCjkText = BIT_FLAG(7),

 FIPO_MicrMode = BIT_FLAG(8),

 FIPO_BuildWordsInfo = BIT_FLAG(9),

 FIPO_PrebuildWordsInfo = BIT_FLAG(10),

 FIPO_UseOldBinarization = BIT_FLAG(11)

} TFineImageProcessingOptionsFlags;

Flag

Name Description

FIPO_BuildWordsInfo If this flag is set, then, after recognition, the

CFineTextLine::WordInfo field stores an array of

CFineWordInfo structures with the

CFineTextLine::WordInfoCount elements.

FIPO_Default If this constant is set, input image will be processed with

default parameters.

FIPO_DetectPageOrientation Specifies whether the page orientation should be detected.

The portrait or landscape page orientation will be detected. If

this flag is set, the rotation parameter of the

FineRecognizeImage, FineRecognizeRegion and

FineRecognizeBusinessCard functions returns the rotation

angle multiple of 90 degrees. These functions return the

recognized text coordinates corresponding to a rotated image.

Note: Setting this flag decreases recognition speed. Also

detection of page orientation requires additional 0.5-1 MB

RAM.

FIPO_DisableDeskew Turns off automatic skew correction.

Note: If you do not use this option, skew correction is

performed during image preprocessing. For adequate skew

correction, the skew angle should not exceed 16 degrees.

FIPO_DisableImageGeometricTransform Equal to FIPO_DisableDeskew.

FIPO_FindAllText If this constant is set, the program will find all text on image.

Pictures and garbage will be analyzed and recognized.

FIPO_HasCjk Specifies whether the input image has Asian characters. This

constant is automatically added into the input parameters in

the recognition functions if the input list of the recognition

languages of these functions contains a CJK language.

FIPO_IsEuropeanWithSomeCjk Specifies whether the input image has text that is written in

European and CJK languages. This constant is automatically

added into the input parameters in the

FineRecognizeBusinessCard function if the input list of the

recognition languages of this function contains a CJK language.

Note: Setting this constant increases recognition speed on

images which contain text written in CJK and European

languages. If text on the image is written only in a CJK

language, it could decrease recognition quality.

FIPO_MicrMode Specifies whether the MICR E13B font must be recognized. See

ABBYY Mobile OCR Engine 4: Native Library API Reference

 60

the Recognizing in MICR Mode section for details.

Note: Only the MICR E13B characters are recognized in the

FIPO_MicrMode mode, all other fonts are ignored.

FIPO_PrebuildWordsInfo If this flag is set, the information about the document layout,

text blocks and lines is prebuilt before the text recognition. The

TFinePrebuiltDataCallbackFunction callback is called

before the text recognition, and the data argument points to a

CFinePrebuiltLayoutInfo structure.

Note: This flag is ignored if the FIPO_HasCjk flag is set.

FIPO_ProhibitVerticalCjkText If this constant is set, the program will recognize only the

horizontal CJK text on image, all vertical CJK text will be

ignored.

FIPO_UseOldBinarization If this constant is set, fast binarization mechanism will not be

used. Image binarization will be slower, but for CJK languages

recognition quality may improve.

See also

FineAnalyzeImage

FineGetTextLines

FinePrebuildWordsInfo

FinePreprocessImage

FineRecognizeBlocks

FineRecognizeBusinessCard

FineRecognizeImage

FineRecognizeRegion

TFinePrebuiltDataType

TFinePrebuiltDataType enumeration constants are used to specify the type of the data that are obtained before

the text recognition. It is used in the TFinePrebuiltDataCallbackFunction callback to specify the pointer type to

which the data argument should be cast.

typedef enum tagTFinePrebuiltDataType {

 FPDT_RotationType = 0,

 FPDT_WordsInfo = 1

} TFinePrebuiltDataType;

Elements

Name Description

FPDT_RotationType If the dataType argument of the TFinePrebuiltDataCallbackFunction callback

function is set to FPDT_RotationType, the data argument of that function should be

cast to the (TFineRotationType*) pointer type. If the

FIPO_DetectPageOrientation flag in the image processing options of the recognition

function is set, then the callback function with this data type delivers the detected

rotation type.

Note: If both FIPO_DetectPageOrientation and FIPO_PrebuildWordsInfo are set in

the image processing options of the recognition function, the callback function with

the FPDT_WordsInfo data type is called after the callback function with the

FPDT_RotationType data type.

FPDT_WordsInfo If the dataType argument of the TFinePrebuiltDataCallbackFunction callback

function is set to FPDT_WordsInfo, the data argument of the that function should

be cast to the (CFinePrebuiltLayoutInfo*) pointer type. If the

FIPO_PrebuildWordsInfo flag is set in the image processing options of the

recognition function, then the callback function with this data type delivers the

prebuilt information about the document layout, including the approximate

positions of the words.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 61

Note: If both FIPO_DetectPageOrientation and FIPO_PrebuildWordsInfo are set in

the image processing options of the recognition function, the callback function with

the FPDT_WordsInfo data type is called after the callback function with the

FPDT_RotationType data type.

See also

TFinePrebuiltDataCallbackFunction

TFineRecognitionConfidenceLevel

TFineRecognitionConfidenceLevel enumeration constants are used to set the level of recognition confidence at

which the recognized characters will receive the FCA_Uncertain attribute.

typedef enum tagTFineRecognitionConfidenceLevel {

 FRCL_Level0 = 0,

 FRCL_Level1 = 1,

 FRCL_Level2 = 2,

 FRCL_Level3 = 3,

 FRCL_Level4 = 4

} TFineRecognitionConfidenceLevel;

Elements

Name Description

FRCL_Level0 No characters are marked as uncertain.

FRCL_Level1 Only very uncertainly recognized characters are marked.

FRCL_Level2 Medium marking level.

FRCL_Level3 Standard uncertain characters marking level.

FRCL_Level4 All suspicious characters are marked.

See also

FineAnalyzeImage

FineRecognizeBlocks

FineRecognizeImage

FineRecognizeRegion

FineRecognizeBusinessCard

CFineTextCharacter

TFineRecognitionMode

TFineRecognitionMode enumeration constants are used to set the recognition mode.

typedef enum tagTFineRecognitionMode{

 FRM_Fast = 0,

 FRM_Full = 1

} TFineRecognitionMode;

Elements

Name Description

FRM_Fast This mode provides 25% faster recognition speed for European languages.

FRM_Full The full recognition mode.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 62

See also

FineAnalyzeImage

FineRecognizeBlocks

FineRecognizeImage

FineRecognizeRegion

FineRecognizeBusinessCard

TFineRotationType

TFineRotationType enumeration constants are used to specify the image rotation angle.

typedef enum tagTFineRotationType {

 FRT_NoRotation,

 FRT_Clockwise,

 FRT_UpsideDown,

 FRT_Counterclockwise

} TFineRotationType;

Elements

Name Description

FRT_NoRotation No rotation.

FRT_Clockwise The image is rotated by 90 degrees clockwise.

FRT_UpsideDown The image is rotated by 180 degrees.

FRT_Counterclockwise The image is rotated by 90 degrees counterclockwise.

See also

FineAnalyzeImage

TFinePrebuiltDataCallbackFunction

FineRecognizeBlocks

FineRecognizeImage

FineRecognizeRegion

FineRecognizeBusinessCard

TFineSupportedCodepage

TFineSupportedCodepage enumeration constants are used to set the barcode code page.

typedef enum tagTFineSupportedCodepage {

 FSC_Arabic = 1256,

 FSC_ArabicIso = 28596,

 FSC_BalticIso = 28594,

 FSC_Cyrillic = 1251,

 FSC_CyrillicIso = 28595,

 FSC_CyrillicKoi8 = 20866,

 FSC_EasternEuropean = 1250,

 FSC_EasternEuropeanIso = 28592,

 FSC_GreekIso = 28597,

 FSC_HebrewIso = 28598,

 FSC_JapanSjis = 932,

 FSC_Latin = 1252,

 FSC_Latin5Iso = 28599,

 FSC_LatinIso = 28591,

 FSC_TurkishIso = 28593,

 FSC_UsMsdos = 437,

 FSC_Utf8 = 65001

ABBYY Mobile OCR Engine 4: Native Library API Reference

 63

} TFineSupportedCodepage;

Elements

Name Description

FSC_Arabic Arabic (1256)

FSC_ArabicIso ISO Arabic (8859-6)

FSC_BalticIso ISO Baltic (8859-4)

FSC_Cyrillic Windows Cyrillic (1251)

FSC_CyrillicIso ISO Cyrillic (8859-5)

FSC_CyrillicKoi8 KOI8 Cyrillic

FSC_EasternEuropean Windows Central Europe (1250)

FSC_EasternEuropeanIso ISO Central Europe (8859-2)

FSC_GreekIso ISO Greek (8859-7)

FSC_HebrewIso ISO Hebrew (8859-8)

FSC_JapanSjis Japanese (Shift-JIS)

FSC_Latin Windows Western Europe (1252)

FSC_Latin5Iso ISO Turkish (8859-9)

FSC_LatinIso ISO Latin 1 (8859-1)

FSC_TurkishIso ISO Latin 3 (8859-3)

FSC_UsMsdos DOS United States (437)

FSC_Utf8 Unicode UTF-8

See also

FineRecognizeBarcode

TFineCharacterAttributes

TFineCharacterAttributes enumeration constants are used as the mask in the CFineTextCharacter structure.

The mask is an OR combination of these flags' values which define character attributes. These constants are defined

using the BIT_FLAG macros.

typedef enum tagTFineCharacterAttributes {

 FCA_Italic = BIT_FLAG(0),

 FCA_Bold = BIT_FLAG(1),

 FCA_Underlined = BIT_FLAG(2),

 FCA_Strikethrough = BIT_FLAG(3),

 FCA_Smallcaps = BIT_FLAG(4),

 FCA_Superscript = BIT_FLAG(5),

 FCA_Uncertain = BIT_FLAG(16),

 FCA_BarcodeBinaryDataHexed = BIT_FLAG(17),

 FCA_BarcodeBinaryZero = BIT_FLAG(18),

 FCA_BarcodeStartStopSymbol = BIT_FLAG(19),

} TFineCharacterAttributes;

Elements

Name Description

FCA_Italic Specifies whether the character is italic.

FCA_Bold Specifies whether the character is bold.

FCA_Underlined Specifies whether the character is underlined.

FCA_Strikethrough Specifies whether the character is strikeout.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 64

FCA_Smallcaps Specifies whether the character has the "small caps" style. This means

that the small characters are displayed as small capitals.

FCA_Superscript Specifies whether the character is superscript.

FCA_Uncertain Specifies whether the character has been recognized uncertainly. The

confidence level at which characters are marked as uncertain must be

set during recognition as a TFineRecognitionConfidenceLevel

constant.

FCA_BarcodeBinaryDataHexed Specifies a binary symbol that is written in hexadecimal format.

FCA_BarcodeBinaryZero Specifies a zero binary symbol replaced by character that is specified in

the FineRecognizeBarcode function as unknownLetter for correct

representation.

FCA_BarcodeStartStopSymbol Specifies the start and stop symbols. This flag is valid for Code39 and

Codabar barcodes.

See also

CFineTextCharacter

TFineTextCharacterQuality

TFineTextCharacterQuality enumeration constants are used to set the character recognition quality.

typedef enum tagTFineTextCharacterQuality {

 FTCQ_Min = 0,

 FTCQ_Max = 100

} TFineTextCharacterQuality;

See also

CFineTextCharacter

TFineWarningCode

TFineWarningCode enumeration constants are used to describe codes of warnings which are passed through the

callback functions.

typedef enum tagTFineWarningCode {

 FWC_NoWarning,

 FWC_SlowRecognition,

 FWC_ProbablyBadImage,

 FWC_ProbablyWrongLanguages,

 FWC_SureWrongLanguages

} TFineWarningCode;

Elements

Name Description

FWC_NoWarning No warning.

FWC_SlowRecognition The recognition process takes a long time.

FWC_ProbablyBadImage The image quality is low.

FWC_ProbablyWrongLanguages The language of the document is likely to be different from the

recognition language you specified.

In this case a pointer to the CFineWarningDataWrongLanguages

structure with recommended recognition languages will be stored in

the warningData parameter of the TFineProgressCallbackFunction.

FWC_SureWrongLanguages The wrong recognition language is specified.

ABBYY Mobile OCR Engine 4: Native Library API Reference

 65

See also

TFineProgressCallbackFunction

TFinePrebuiltDataCallbackFunction

TFineWordAttributes

TFineWordAttributes enumeration constants are used to specify the word attributes.

enum TFineWordAttributes {

 FWA_NotWord = BIT_FLAG(1),

 FWA_SplitWord = BIT_FLAG(2),

 FWA_HyphenatedWord = BIT_FLAG(3)

};

Elements

Name Description

FWA_NotWord Non-word part of the text such as a space, punctuation, and so on. In this case,

there should be the only one word variant with FWVT_Original type.

FWA_SplitWord A part of a long word.

FWA_HyphenatedWord The word contains two parts separated by a new line. The word with this flag is

always the last one in the text line. You should ignore the rectangle of a word

with this attribute.

See also

CFineWordInfo

TFineWordVariantType

TFineWordVariantType enumeration constants are used to specify the type of the recognized word variant.

typedef enum tagTFineWordVariantType {

 FWVT_Original,

 FWVT_PrimaryForm

} TFineWordVariantType;

Elements

Name Description

FWVT_Original The original word as it is recognized. This variant always exists.

FWVT_PrimaryForm The primary word form.

See also

CFineWordVariant

TLanguageID

TLanguageID enumeration constants are used in ABBYY Mobile OCR Engine for internal representation of language

ID. The name of every constant is constructed as LID_<internal language name>. See Recognition Languages in

ABBYY Mobile OCR Engine for the list of languages and their internal names.

typedef enum tagTLanguageID {

 LID_Undefined,

 LID_Afrikaans,

 LID_Albanian,

 LID_Basque,

 LID_Breton,

ABBYY Mobile OCR Engine 4: Native Library API Reference

 66

 LID_Bulgarian,

 LID_Byelorussian,

 LID_Catalan,

 LID_Chechen,

 LID_CrimeanTatar,

 LID_Croatian,

 LID_Czech,

 LID_Danish,

 LID_Dutch,

 LID_DutchBelgian,

 LID_English,

 LID_Estonian,

 LID_Fijian,

 LID_Finnish,

 LID_French,

 LID_German,

 LID_GermanNewSpelling,

 LID_Greek,

 LID_Hawaiian,

 LID_Hungarian,

 LID_Icelandic,

 LID_Indonesian,

 LID_Irish,

 LID_Italian,

 LID_Kabardian,

 LID_Latin,

 LID_Latvian,

 LID_Lithuanian,

 LID_Macedonian,

 LID_Malay,

 LID_Maori,

 LID_Mixed,

 LID_Moldavian,

 LID_Mongol,

 LID_Norwegian,

 LID_NorwegianBokmal,

 LID_NorwegianNynorsk,

 LID_Ossetic,

 LID_Polish,

 LID_Portuguese,

 LID_PortugueseBrazilian,

 LID_Provencal,

 LID_RhaetoRomanic,

 LID_Romanian,

 LID_Russian,

 LID_Samoan,

 LID_Serbian,

 LID_Slovak,

 LID_Slovenian,

 LID_Spanish,

 LID_Swahili,

 LID_Swedish,

 LID_Tagalog,

 LID_Tatar,

 LID_Turkish,

ABBYY Mobile OCR Engine 4: Native Library API Reference

 67

 LID_Ukrainian,

 LID_Welsh,

 LID_Digits,

 LID_WestEuropean,

 LID_FirstCJKLanguageID,

 LID_ChineseSimplified = LID_FirstCJKLanguageID,

 LID_ChineseTraditional,

 LID_Japanese,

 LID_Korean,

 LID_KoreanHangul,

 LID_KoreanHanja,

 LID_LastCJKLanguageID = LID_KoreanHanja,

 LID_FirstUserLanguageID = 1024,

 LID_Max = 0xffff

} TLanguageID;

Note: Count for user languages' IDs starts from LID_FirstUserLanguageID.

See also

Recognition Languages in ABBYY Mobile OCR Engine

FineAnalyzeImage

FineRecognizeImage

FineRecognizeRegion

ABBYY Mobile OCR Engine 4: Licensing

 68

Licensing

A special protection technology is used to protect ABBYY Mobile OCR Engine from illegal copying and distribution. This

technology effectively excludes unauthorized use of ABBYY products by persons who have not signed a License

Agreement with the software copyright owner.

Developer and Runtime Licenses

ABBYY Mobile OCR Engine has two types of licenses:
• Developer License

This license grants an SDK customer the right to use ABBYY Mobile OCR Engine for development

purposes only or for internal use of the developed applications only under the terms of Software

Developer License Agreement. Developer License does not allow developers to distribute their

applications with ABBYY Mobile OCR Engine functions inside or to use the developed applications

internally.

• Runtime License

This license grants developers the right to distribute ABBYY Mobile OCR Engine functions inside

developer’s applications. Runtime licensing is regulated by Runtime License Agreement with ABBYY.

Note: If you use a trial license, the word "ABBYY" will appear in each 20th line in the recognized text and in each 3d

recognized business card.

ABBYY Mobile OCR Engine license is stored in a license file (*.License). No operations with ABBYY Mobile OCR Engine

may be performed until a valid license is loaded.

Loading the license in native library

To add license information to an application, do the following:
1. Load the license file into memory.

2. Assign the LicenseData field of the CFineLicenseInfo structure to a pointer to the memory

buffer which contains loaded data.

3. Specify the DataLength and ApplicationID fields of the structure. The ApplicationID f ield

must correspond to the application name in the license f ile.

4. Pass a constant pointer to the CFineLicenseInfo variable to the FineSetLicenseInfo function.

Use the FineGetLicenseInfo function to get information about the current license.

Copyright and Trademark Notices
© 2013 ABBYY Production LLC. All rights reserved

This program is built on proprietary ABBYY technologies but also includes a number of third-party solutions:

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries.

All other trademarks are the property of their respective owners.

Working with JPEG image format:

This software is based in part on the work of the Independent JPEG Group.

Opening DjVu image format:

Portions of this computer program are copyright © 2008 Celartem, Inc. All rights reserved.

Portions of this computer program are copyright © 2011 Caminova, Inc. All rights reserved.

Portions of this computer program are copyright © 2013 Cuminas, Inc. All rights reserved.

DjVu is protected by U.S. Patent No. 6,058,214. Foreign Patents Pending.

Powered by AT&T Labs Technology.

ABBYY Mobile OCR Engine 4: Licensing

 69

Creating and manipulating processing threads:

Copyright © 2001,2006 Ross P. Johnson

All rights reserved.

Pthreads-win32 library is covered by the GNU Lesser General Public License. A copy of the License can be found

under the filename COPYING.LIB

ABBYY Mobile OCR Engine 4: Specifications

 70

Specifications

This section contains the description of ABBYY Mobile OCR Engine general features and technical requirements:
• Recognition Languages

• Supported Image Formats

• Barcode Types

• System Requirements

• Backward Compatibility Issues

• ABBYY Mobile OCR Engine Distribution Kit

• What's New in ABBYY Mobile OCR Engine 4 release 14

Recognition Languages in ABBYY Mobile OCR Engine
Below is the list of internal names of the languages that are supported in ABBYY Mobile OCR Engine 4. Those

languages which have full built-in dictionary support and keywords dictionary support for business card recognition

(BCR) are marked in the table below. ABBYY Mobile OCR Engine 4 provides its own system dictionaries for the

languages that have full built-in dictionary support.

Internal name Recognition language Full dictionary

support available

Can be used

for for BCR

Afrikaans Afrikaans

Albanian Albanian

Basque Basque

Byelorussian Belarussian

Breton Breton

Bulgarian Bulgarian +

Catalan Catalan

Chechen Chechen

ChineseSimplified Chinese Simplified +

ChineseTraditional Chinese Traditional +

CrimeanTatar Crimean Tatar

Croatian Croatian

Czech Czech + +

Danish Danish + +

Digits Digits

Dutch Dutch (Netherlands) + +

DutchBelgian Dutch (Belgium) + +

English English + +

Estonian Estonian + +

Fijian Fijian

Finnish Finnish + +

French French + +

ABBYY Mobile OCR Engine 4: Specifications

 71

German German + +

GermanNewSpelling German (new spelling) + +

Greek Greek + +

Hawaiian Hawaiian

Hungarian Hungarian

Icelandic Icelandic

Indonesian Indonesian + +

Irish Irish

Italian Italian + +

Japanese Japanese +

Kabardian Kabardian

Korean Korean +

KoreanHanja Hanja

KoreanHangul Hangul

Latin Latin

Latvian Latvian

Lithuanian Lithuanian

Macedonian Macedonian

Malay Malay

Maori Maori

Mixed English + Russian +

Moldavian Moldavian

Mongol Mongol

Norwegian Norwegian (Bokmal) + Norwegian

(Nynorsk)

+ +

NorwegianBokmal Norwegian (Bokmal) + +

NorwegianNynorsk Norwegian (Nynorsk) + +

Ossetic Ossetic

Polish Polish + +

Portuguese Portuguese + +

PortugueseBrazilian Portuguese (Brazil) + +

Provencal Provencal

RhaetoRomanic Rhaeto-Romanic

Romanian Romanian

Russian Russian + +

Samoan Samoan

Serbian Serbian

Slovak Slovak

Slovenian Slovenian

Spanish Spanish + +

Swahili Swahili

Swedish Swedish + +

Tagalog Tagalog

ABBYY Mobile OCR Engine 4: Specifications

 72

Tatar Tatar

Turkish Turkish + +

Ukrainian Ukrainian + +

Welsh Welsh

WestEuropean English + French + German +

Portuguese + Spanish + Italian

+ +

See also

Working with Dictionaries

Working with Languages

TLanguageID

Supported Image Formats
The ABBYY Mobile OCR Engine library supports loading the images in the following formats:

• JPEG

• PNG

If you need to load an image in another format, you must load it into memory and convert it to the CFineImage

format before calling the library functions.

Note: The Mobile OCR Engine will not open images larger than 32512*32512 pixels.

For accurate recognition, the images must conform to certain requirements:
• the letters' size must be 2 to 20 mm, and not less than 10 pixels on image

• the best resolution for texts printed in fonts 10 pt or larger is 300 dpi

• the best resolution for texts printed in fonts 9 pt or smaller is 400–600 dpi

See also

How to Use the Native Library

Description of the Sample

Barcode Types
ABBYY Mobile OCR Engine can recognize barcodes of the following types:

Barcode Type Description

Aztec Aztec is a high density two-dimensional matrix style bar code symbology that can

encode up to 3750 characters from the entire 256 byte ASCII character set. The

symbol is built on a square grid with a bulls-eye pattern at its center.

Codabar Codabar is a self-checking, variable length barcode that can encode 16 data

characters. It is used primarily for numeric data, but also encodes six special

characters. Codabar is useful for encoding dollar and mathematical figures

because a decimal point, plus sign, and minus sign can be encoded.

Code 128 Code 128 is an alphanumeric, very high-density, compact, variable length barcode

scheme that can encode the full 128 ASCII character set. Each character is

represented by three bars and three spaces totaling 11 modules. Each bar or

space is one, two, three, or four modules wide with the total number of modules

representing bars an even number and the total number of modules representing

a space an odd number. Three different start characters are used to select one of

ABBYY Mobile OCR Engine 4: Specifications

 73

three character sets.

Code 39 Code 39, also referred to as Code 3 of 9, is an alphanumeric, self-checking,

variable length barcode that uses five black bars and four spaces to define a

character. Three of the elements are wide and six are narrow.

Code 93 Code 93 is a variable length bar code that encodes 47 characters. It is named

Code 93 because every character is constructed from nine elements arranged into

three bars with their adjacent spaces. Code 93 is a compressed version of Code 39

and was designed to complement Code 39.

Data Matrix Data Matrix is a two-dimensional matrix barcode consisting of black and white

modules arranged in either a square or rectangular pattern. Every Data Matrix is

composed of two solid adjacent borders in an "L" shape and two other borders

consisting of alternating dark and light modules. Within these borders are rows

and columns of cells encoding information. A Data Matrix barcode can store up to

2335 alphanumeric characters.

EAN 8 and 13 The European Article Numbering (EAN) system is used for products that require a

country origin. This is a fixed-length barcode used to encode either eight or

thirteen characters. The first two characters identify the country of origin, the next

characters are data characters, and the last character is the checksum. These

barcodes may include an additional barcode to the right of the main barcode. This

second barcode, which is usually not as tall as the primary barcode, is used to

encode additional information for newspapers, books, and other periodicals. The

supplemental barcode may either encoded 2 or 5 digits of information.

GS1-128 This type of barcode is a 19 digit barcode with a 20th check digit. For a total of 20

digits. It typically is used for carton identification. Both for internal carton

numbering and also for using the GS1-128 barcode on your cartons being shipped

out to your customers. The former name was UCC-128.

IATA 2 of 5 IATA 2 of 5 is a barcode standard designed by the IATA (International Air

Transport Association). This standard is used for all boarding passes.

Industrial 2 of 5 Industrial 2 of 5 is numeric-only barcode that has been in use a long time. Unlike

Interleaved 2 of 5, all of the information is encoded in the bars; the spaces are

fixed width and are used only to separate the bars. The code is self-checking and

does not include a checksum.

Interleaved 2 of 5 Interleaved 2 of 5 is a variable length (must be a multiple of two), high-density,

self-checking, numeric barcode that uses five black bars and five white bars to

define a character. Two digits are encoded in every character; one in the black

bars and one in the white bars. Two of the black bars and two of the white bars

are wide. The other bars are narrow.

Matrix 2 of 5 Standard 2 of 5 is self-checking numeric-only barcode. Unlike Interleaved 2 of 5,

all of the information is encoded in the bars; the spaces are fixed width and are

used only to separate the bars. Matrix 2 of 5 is used primarily for warehouse

sorting, photo finishing, and airline ticket marking.

MaxiCode MaxiCode is two-dimensional machine-readable code that uses dots arranged in a

hexagonal grid. It is usually one inch square that can store around one hundred

characters of information and usually used for tracking and managing the

shipment of packages.

Patch A pattern of horizontal black bars separated by spaces. Typically, a patch code is

placed near the top center of a paper document to be scanned and used as a

document separator.

PDF417 PDF417 is a variable length, two-dimensional (2D), stacked symbology that can

store up to 1,850 printable ASCII characters or 1,100 binary characters per

symbol. PDF417 is designed with selectable levels of error correction. Its high data

capacity can be helpful in applications where a large amount of data must travel

with a labeled document or item.

PostNet The Postnet (Postal Numeric Encoding Technique) is a fixed length symbology (5,

ABBYY Mobile OCR Engine 4: Specifications

 74

6, 9, or 11 characters) which uses constant bar and space width. Information is

encoded by varying the bar height between the two values. Postnet barcodes are

placed on the lower right of envelopes or postcards, and are used to expedite the

processing of mail with automatic equipment and provide reduced postage rates.

QR Code QR Code is a two-dimensional matrix barcode. The barcode has 3 large squares

(registration marks) in the corners which define the top of the barcode. The black

and white squares in the area between the registration marks are the encoded

data and error correction keys. QR Codes can encode over 4000 ASCII characters.

UPC-A The UPC-A (Universal Product Code) barcode is 12 digits long, including its

checksum. Each digit is represented by a seven-bit sequence, encoded by a series

of alternating bars and spaces. UPC-A is used for marking products which are sold

at retail in the USA.

UPC-E The Universal Product Code (UPC) compresses the data characters and the

checksum into six characters. Only tags with a number system character of zero

can be encoded into UPC-E. In addition, the original ten data characters must have

at least four zeros. This bar code is ideal for small packages because it is the

smallest bar code.

See also

TFineBarcodeType

FineRecognizeBarcode

System Requirements

Supported Operating Systems

The Mobile OCR Engine supports Win32.

ABBYY offers professional services to port the software to other platforms and to customize the software for special

tasks.

The ABBYY Mobile OCR Engine native library may be used for testing. The ABBYY Mobile OCR Engine library supplied

as DLL and as static library and as a wrapper of the library for Android and iOS may be found in the appropriate

distributions.

Backward Compatibility Issues of ABBYY Mobile OCR Engine
This section contains the descriptions of compatibility issues:

• Compatibility with previous releases of version 4

• Compatibility with version 3.0 or older

Compatibility of ABBYY Mobile OCR Engine 4 release 14 with previous releases

Different builds of ABBYY Mobile OCR Engine are not binary compatible. Applications that were compiled using earlier

builds of ABBYY Mobile OCR Engine should be recompiled. Some changes in the source code may be necessary

because of the improvements in the API. In the table below you can find the API changes introduced in the different

builds.

Build

Changes Required code modifications

4.0

r12

The rotation property was removed from the

FineRecognizeBlocks method.

Remove all mentions of the rotation property

of the FineRecognizeBlocks method.

ABBYY Mobile OCR Engine 4: Specifications

 75

4.0

r10

ABBYY Mobile OCR Engine does not support the

Symbian, WinCE, and WinMobile operating systems.

The Symbian, WinCE, and WinMobile

operating systems are no longer supported.

The Yiddish recognition language is not supported

any longer.

Remove the Yiddish language from the list of

the recognition languages.

The TCallbackFunction function has been replaced

by TFineProgressCallbackFunction.

Replace the TCallbackFunction function by

TFineProgressCallbackFunction.

The following types have been deprecated:

PFINE_ANGLE

PFINE_BARCODE

PFINE_BCR_FIELD

PFINE_BUSINESS_CARD

PFINE_FIELD_COMPONENT

PFINE_IMAGE

PFINE_IMAGE_TRANSFORMATION_INFO

PFINE_LAYOUT

PFINE_LICENSE_INFO

PFINE_RECTS

PFINE_TEXT_BLOCK

PFINE_TEXT_CHARACTER

PFINE_TEXT_LINE

PFINE_WARNING_DATA_WRONG_LANGUAGE

PFINE_WORD_SUGGESTION

Replace the PFINE_* types to the

corresponding pointers.

The constants of the TFineBarcodeSupplement

enumeration have been renamed.

Rename the TFineBarcodeSupplement

enumeration constants as follows:

FBS_VOID = FBS_Void,

FBS_2DIGIT = FBS_2Digit,

FBS_5DIGIT = FBS_5Digit,

FBS_AUTODETECT = FBS_AutoDetect,

FBS_ANY_SUPPLEMENT =

FBS_AnySupplement

The constants of the TFineBarcodeOrientation

enumeration have been renamed.

Rename the TFineBarcodeOrientation

enumeration constants as follows:

FBO_LEFT_TO_RIGHT = FBO_LeftToRight,

FBO_DOWN_TO_TOP = FBO_DownToTop,

FBO_RIGHT_TO_LEFT = FBO_RightToLeft,

FBO_TOP_TO_DOWN = FBO_TopToDown,

FBO_AUTODETECT = FBO_AutoDetect

The constants of the TFineBarcodeType

enumeration have been renamed.

Rename the TFineBarcodeType

enumeration constants as follows:

FBT_UNRECOGNIZED = FBT_Unrecognized

FBT_CODE39 = FBT_Code39

FBT_INTERLEAVED25 = FBT_Interleaved25

FBT_EAN13 = FBT_Ean13

FBT_CODE128 = FBT_Code128

FBT_EAN8 = FBT_Ean8

FBT_PDF417 = FBT_Pdf417

FBT_CODABAR = FBT_Codabar

FBT_UPCE = FBT_Upce

FBT_INDUSTRIAL25 = FBT_Industrial25

FBT_IATA25 = FBT_Iata25

FBT_MATRIX25 = FBT_Matrix25

FBT_CODE93 = FBT_Code93

FBT_POSTNET = FBT_Postnet

FBT_UCC128 = FBT_Ucc128

FBT_PATCH = FBT_Patch

ABBYY Mobile OCR Engine 4: Specifications

 76

FBT_AZTEC = FBT_Aztec

FBT_DATAMATRIX = FBT_Datamatrix

FBT_QRCODE = FBT_Qrcode

FBT_UPCA = FBT_Upca

FBT_MAXICODE = FBT_Maxicode

FBT_ANY1D = FBT_Any1D

FBT_SQUARE2D = FBT_Square2D

FBT_ANY1D_WITH_SUPPLEMENT =

FBT_Any1DWithSupplement

The TRecognitionConfidenceLevel enumeration

and its constants have been renamed.

Rename the TRecognitionConfidenceLevel

enumeration to

TFineRecognitionConfidenceLevel and its

constants as follows:

RCL_Level0 = FRCL_Level0,

RCL_Level1 = FRCL_Level1,

RCL_Level2 = FRCL_Level2,

RCL_Level3 = FRCL_Level3,

RCL_Level4 = FRCL_Level4

The TRecognitionMode enumeration and its

constants have been renamed.

Rename the TRecognitionMode

enumeration to TFineRecognitionMode and

its constants as follows:

RM_Fast = FRM_Fast,

RM_Full = FRM_Full

The PFINE_PATTERNS , PFINE_DICTIONARY, and

PFINE_KEYWORDS types have been replaced by

TFinePatternsPtr, TFineDictionaryPtr, and

TFineKeywordsPtr, respectively.

Replace the variables of the

PFINE_PATTERNS, PFINE_DICTIONARY,

and PFINE_KEYWORDS types by

TFinePatternsPtr, TFineDictionaryPtr,

and TFineKeywordsPtr, respectively. See

Types in ABBYY Mobile OCR Engine Native

Library for details.

The FINE_ATTR_ prefixed flags has been replaced

by the TFineCharacterAttributes enumeration.

Replace all FINE_ATTR_ prefixed flags by the

TFineCharacterAttributes enumeration

constants as follows:

FINE_ATTR_ITALIC = FCA_Italic,

FINE_ATTR_BOLD = FCA_Bold,

FINE_ATTR_UNDERLINED = FCA_Underlined,

FINE_ATTR_STRIKETHROUGH =

FCA_Strikethrough,

FINE_ATTR_SMALLCAPS = FCA_Smallcaps,

FINE_ATTR_SUPERSCRIPT =

FCA_Superscript,

FINE_ATTR_UNCERTAIN = FCA_Uncertain,

FINE_ATTR_BARCODE_BINARY_DATA_HEXED

= FCA_BarcodeBinaryDataHexed,

FINE_ATTR_BARCODE_BINARY_ZERO =

FCA_BarcodeBinaryZero,

FINE_ATTR_BARCODE_START_STOP_SYMBOL

= FCA_BarcodeStartStopSymbol

The TFineImageProcessingOptions, TBCRFieldType,

TBCRComponentType, FINE_WARNING_CODE

enumerations have been renamed to

TFineImageProcessingOptionsFlags, TBcrFieldType,

TBcrComponentType, and TFineWarningCode,

respectively.

Rename the TFineImageProcessingOptions,,

TBCRFieldType, TBCRComponentType,

FINE_WARNING_CODE enumerations to

TFineImageProcessingOptionsFlags,

TBcrFieldType, TBcrComponentType, and

TFineWarningCode, respectively.

The FINE_ANGLE, FINE_BARCODE,

FINE_BCR_FIELD, FINE_BUSINESS_CARD,

Replace variables of the FINE_ANGLE,

FINE_BARCODE, FINE_BCR_FIELD,

ABBYY Mobile OCR Engine 4: Specifications

 77

FINE_FIELD_COMPONENT, FINE_IMAGE,

FINE_IMAGE_TRANSFORMATION_INFO,

FINE_LAYOUT, FINE_LICENSE_INFO, FINE_RECTS,

FINE_TEXT_BLOCK, FINE_TEXT_CHARACTER,

FINE_TEXT_LINE,

FINE_WARNING_DATA_WRONG_LANGUAGE, and

FINE_WORD_SUGGESTION structures have been

replaced by CFineAngle, CFineBarcode,

CFineBcrField, CFineBusinessCard,

CFineBcrFieldComponent, CFineImage,

CFineImageTransformationInfo, CFineLayout,

CFineLicenseInfo, CFineRects, CFineTextBlock,

CFineTextCharacter, CFineTextLine,

CFineWarningDataWrongLanguages, and

CFineWordSuggestion, respectively.

FINE_BUSINESS_CARD,

FINE_FIELD_COMPONENT, FINE_IMAGE,

FINE_IMAGE_TRANSFORMATION_INFO,

FINE_LAYOUT, FINE_LICENSE_INFO,

FINE_RECTS, FINE_TEXT_BLOCK,

FINE_TEXT_CHARACTER, FINE_TEXT_LINE,

FINE_WARNING_DATA_WRONG_LANGUAGE,

and FINE_WORD_SUGGESTION types by

CFineAngle, CFineBarcode, CFineBcrField,

CFineBusinessCard, CFineBcrFieldComponent,

CFineImage, CFineImageTransformationInfo,

CFineLayout, CFineLicenseInfo, CFineRects,

CFineTextBlock, CFineTextCharacter,

CFineTextLine,

CFineWarningDataWrongLanguages, and

CFineWordSuggestion, respectively.

The FINE_ERROR_CODE enumeration and its

constants have been renamed.

Rename the FINE_ERROR_CODE

enumeration to TFineErrorCode and its

constants as follows:

FINE_ERR_NO_ERROR = FEC_NoError,

FINE_ERR_NOT_INITIALIZED =

FEC_NotInitialized,

FINE_ERR_LICENSE_ERROR =

FEC_LicenseError,

FINE_ERR_INVALID_ARGUMENT =

FEC_InvalidArgument,

FINE_ERR_NOT_ENOUGH_MEMORY =

FEC_NotEnoughMemory,

FINE_ERR_INTERNAL_FAILURE =

FEC_InternalFailure,

FINE_ERR_TERMINATED_BY_CALLBACK =

FEC_TerminatedByCallback

The FINE_CUSTOMER_KEY and

FINE_WARN_WRONG_LANG structures have

been removed.

Remove variables of the

FINE_CUSTOMER_KEY and

FINE_WARN_WRONG_LANG types.

4.0

r7

The TrialKey.h file has been deleted. The trial

license is stored in the /License/Sample.license file.

Delete the TrialKey.h file from the included

files, load the license file to the memory, and

pass loaded information to ABBYY Mobile OCR

Engine library. See Licensing section for

details.

4.0

r5

The BCT_AddressClarification and

BCT_AddressUnclassifiedPart constants have been

removed from the TBcrComponentType

enumeration, and the BCT_State constant has been

renamed to BCT_Region.

Use the BCT_StreetAddress constant instead

of BCT_AddressClarification and

BCT_AddressUnclassifiedPart. Rename the

BCT_State constant.

4.0

r2

The ability to detect the page orientation has been

added (the FIPO_DetectPageOrientation constant of

the TFineImageProcessingOptions

enumeration). Due to this change the rotation

parameter has been added in the

FineRecognizeImage, FineRecognizeRegion

and FineRecognizeBusinessCard functions.

Add 0 as the rotation parameter in all calls of

the FineRecognizeImage,

FineRecognizeRegion and

FineRecognizeBusinessCard functions.

4.0.1 The licensing of ABBYY Mobile OCR Engine has

been changed. A customer key provides access to

certain functionality of ABBYY Mobile OCR Engine. A

user can have a set of keys representing necessary

Add license information with the help of the

FineSetLicenseInfo function.

ABBYY Mobile OCR Engine 4: Specifications

 78

functionality. The FineSetLicenseInfo function

has been created for adding license information.

You have to call the FineSetLicenseInfo function

for your license after calling of the FineInitialize

function.

4.0 The AllDictionaryLanguages.rom and

AllLanguages.rom files have been removed. The

European.rom file must be used instead.

Load the European.rom file instead of the

AllDictionaryLanguages.rom and

AllLanguages.rom files.

The Quality field has been added

into CFineTextCharacter structure. The

FIPO_SkipDictionaryUncertainty flag has been

removed from the

TFineImageProcessingOptions set.

Use the value of the Quality field instead of

the FIPO_SkipDictionaryUncertainty flag.

The definition of the BFT_Text field has been

changed. Now the recognized text is stored in this

field.

If you want to get text fragments from the

field of the BFT_Text type, which is not stored

in another field, you can remove text

fragments stored in another field using

information about character rectangles.

The CJK languages (Chinese Simplified, Chinese

Traditional, Japanese, and Korean) are now

available for recognition. The cjkPatterns parameter

has been added into FineRecognizeImage,

FineRecognizeRegion,

FineRecognizeBusinessCard functions. This

parameter contains the zero-terminated list of

pointers to the patterns for CJK languages. It must

not be null and must contain valid patterns, if one

of these languages is specified in the languages

parameter.

Notes:
• The ChineseJapanese.rom f ile must be

specif ied in the cjkPatterns parameter for

recognition of text in Chinese or Japanese

language.

• Both the ChineseJapanese.rom and

KoreanSpecif ic.rom files must be

specif ied in the cjkPatterns parameter for

recognition of text in Korean language.

Pass 0 as cjkPatterns parameter in the

recognition functions, if the code does not

perform recognition of texts in CJK languages.

Compatibility of ABBYY Mobile OCR Engine with version 3.0 and older

Different builds of ABBYY Mobile OCR Engine are not binary compatible. Applications that were compiled using earlier

builds of ABBYY Mobile OCR Engine should be recompiled. Some changes in the source code may be necessary

because of the improvements in the API. In the table below you can find the API changes introduced in the different

builds.

Build

Changes Required code modifications

3.0

r4

The TrialKey.h file has been removed. You have to use the serial number from our

re-sellers.

3.0

r3

The format of

TFineProgressCallbackFunction has been

changed:
• The warning parameter is a

Redefine your callback function and warning

handling. Here is a sample implementation:

int TFineProgressCallbackFunction(

ABBYY Mobile OCR Engine 4: Specifications

 79

TFineWarningCode constant

instead of a combination.

• The new warningData parameter has

been added. It depends on the value

of the warning parameter. If the

warning parameter is

FWC_ProbablyWrongLanguages, the

warningData parameter gets a

pointer to a structure which should

be cast to the

CFineWarningDataWrongLanguag

es type. For other constants of the

TFineWarningCode enumerations,

this parameter does not make sense

and should be ignored.

 int processedPercentage,

 DWORD warning,

 void* warningData)

{

 fprintf(TraceFile, "%d%% of the

work is done.\n",

processedPercentage);

 if(warning ==

FWC_ProbablyBadImage) {

 fprintf(TraceFile, "The image

quality is too low.\n");

 }

 if(processedPercentage < 50

 && (warning ==

FWC_SlowRecognition) != 0)

 {

 return 0;

 } else {

 return 1;

 }

}

2.0 The FinePreprocessImage function returns

the angle by which the image skew was

corrected.

Add to the FinePreprocessImage call the

transformationInfo argument. If

FinePreprocessImage completes

successfully, free up transformationInfo using

the FineFreeMemory function.

Simple types (BYTE, etc.) are now defined

through conditional compilation.

No changes are required.

• TFineImagePreprocessingMode

enumeration was renamed to

TFineImageProcessingOptions

enumeration.

• All functions that work with images

(FinePreprocessImage,

FineRecognizeBusinessCard,

FineGetTextLines,

FineRecognizeImage, and

FineRecognizeRegion) now have an

argument of type

TFineImageProcessingOptions.

Pass the FIPO_Default value to the

corresponding functions for the same

behavior.

Client code may obtain debug information via a

callback function of type

FineExecutionLogFunction.

Pass 0 for the executionLogFunction argument

of the FineInitialize function if you do not

need to receive information about the

processing.

The FineBinarizeImage function has been

removed.

Use the FinePreprocessImage function.

The FineRecognizeImage and

FineRecognizeRegion image recognition

functions return information about the text

blocks instead of the list of lines. Now these

functions return the CFineLayout structure,

which contains an array of blocks

(CFineTextBlock), each of which in turn

contains an array of lines CFineTextLine.

To iterate through all the lines of a recognized

text, you need to iterate through all the

blocks.

ABBYY Mobile OCR Engine 4: Specifications

 80

Changes were made to memory allocation.

Previously, pre-allocated memory blocks were

passed to API functions. The API functions

worked with these blocks and issued the results

via these blocks. Now, when a library is

initialized, pointers to the memory allocation

and release functions are passed to the

FineInitialize function, and the library uses

these pointers to work with the memory.

Memory for the results returned by an API

function is allocated inside this function. The

client code must free up this memory using

the FineFreeMemory function.

• For any platforms other than those

identified above, def ine two

functions of types

TFineAllocMemoryFunction and

TFineFreeMemoryFunction and pass

their pointers to FineInitialize. In

addition, you can pass pointers to

system functions malloc and free as

these arguments.

• Delete the ram and ramSize

arguments in your API functions.

• You don't need to handle the error

FINE_ERR_OUTPUT_BUFF_TOO_SMA

LL, as buffers for output results are

now allocated inside API functions

and not in client code.

• Change the way you work with

output data produced by API

functions. After using the output

buffer you have to free it up using

the FineFreeMemory function.

The FINE_ATTR_CERTAIN_SPACE flag was

removed.

The confidence for a space, just like

confidences for other characters, should be

determined via the FCA_Uncertain flag of the

TFineCharacterAttributes enumeration.

The confidenceLevel argument was added to

the recognition functions.

In the FineRecognizeImage and

FineRecognizeRegion recognition functions,

pass the FRCL_Level3 value as the

confidenceLevel argument.

A special WestEuropean language was

introduced to speed up OCR that involves

multiple European languages. The

WestEuropean language combines English,

French, German, Portuguese, Spanish, and

Italian.

No changes are required.

The CFineBcrField structure no longer

contains a property describing the region of a

field on the image. A region is a list of

coordinates of the rectangles that enclose the

field.

The region of a field can now be obtained by

merging the rectangles from the

CFineTextLine::Rect property which enclose

the field lines.

In the CFineBcrField structure, in the

TextLines property, the text of a field is now

written not as a WCHAR string, but as an array

of CFineTextLine lines.

To get the text of a field:
• iterate the values of the Chars

property of the CFineTextLine

structure.

• get the value of

CFineTextCharacter::Unicode

from each element of the Chars

property.

In the TBcrFieldType enumeration, the

BFT_Max constant was renamed to BFT_Count.

Rename BFT_Max to BFT_Count.

ABBYY Mobile OCR Engine 4: Specifications

 81

ABBYY Mobile OCR Engine Distribution Kit
The ABBYY Mobile OCR Engine library supplied as a static library and as a wrapper of the library for Android and iOS

may be found in the appropriate distributions.

This section contains a list of all files you will find in the distribution package for testing of the recognizing quality and

describes the function of each file.

The list of files supplied in different ABBYY Mobile OCR Engine distribution kits may not be the same as in the list

below and may vary depending on the product’s version.

You can use the ABBYY Mobile OCR Engine native library for testing (Native Library API Reference). All the resources

you will find in the TestShell folder. Select the necessary files, depending on functionality and recognition languages

you intend to work with.

Folder File name Description

lib\ MobileOcrEngine.dll,

MobileOcrEngine.lib

These files are necessary to run the

applications which use ABBYY Mobile OCR

Engine on desktop computers, e.g. for

quality testing purposes.

pthreadVC2.dll This is a file for multi-threaded processing

with ABBYY Mobile OCR Engine.

COPYING Pthreads-win32 license.

COPYING.LIB GNU Lesser General Public License.

TestShell\BcrData Brazil.akw Portuguese (Brazilian) language support for

business card recognition.

ChineseSimplified.akw Chinese (PRC) language support for business

card recognition.

ChineseTraditional.akw Chinese (Taiwan) language support for

business card recognition.

Czech.akw Czech language support for business card

recognition.

Danish.akw Danish language support for business card

recognition.

Dutch.akw Dutch language support for business card

recognition.

English.akw English language support for business card

recognition.

Eston.akw Estonian language support for business card

recognition.

Finnish.akw Finnish language support for business card

recognition.

French.akw French language support for business card

recognition.

German.akw German language support for business card

recognition.

Greek.akw Greek language support for business card

recognition.

Indones.akw Indonesian language support for business

card recognition.

Italian.akw Italian language support for business card

recognition.

Japanese.akw Japanese language support for business card

recognition.

ABBYY Mobile OCR Engine 4: Specifications

 82

Korean.akw Korean language support for business card

recognition.

NorwBok.akw Norwegian (Bokmal) language support for

business card recognition.

NorwNyn.akw Norwegian (Nynorsk) language support for

business card recognition.

Polish.akw Polish language support for business card

recognition.

Portug.akw Portuguese language support for business

card recognition.

Russian.akw Russian language support for business card

recognition.

Spanish.akw Spanish language support for business card

recognition.

Swedish.akw Swedish language support for business card

recognition.

Turkish.akw Turkish language support for business card

recognition.

Ukrain.akw Ukrainian language support for business

card recognition.

WestEuropean.akw West European (English, French, German,

Portuguese, Spanish, Italian) languages set

support for business card recognition.

TestShell\Dictionaries Brazil.edc Portuguese (Brazilian) language dictionary

support.

Bulgar.edc Bulgarian language dictionary support.

Czech.edc Czech language dictionary support.

Danish.edc Danish language dictionary support.

Dutch.edc Dutch language dictionary support.

English.edc English language dictionary support.

Eston.edc Estonian language dictionary support.

Finnish.edc Finnish language dictionary support.

Flemmish.edc Dutch (Belgium) language dictionary

support.

French.edc French language dictionary support.

German.edc German language dictionary support.

GermanNS.edc German (new spelling) language dictionary

support.

Greek.edc Greek language dictionary support.

Indones.edc Indonesian language dictionary support.

Italian.edc Italian language dictionary support.

NorwBok.edc Norwegian (Bokmal) language dictionary

support.

NorwNyn.edc Norwegian (Nynorsk) language dictionary

support.

Polish.edc Polish language dictionary support.

Portug.edc Portuguese language dictionary support.

ABBYY Mobile OCR Engine 4: Specifications

 83

Russian.edc Russian language dictionary support.

Spanish.edc Spanish language dictionary support.

Swedish.edc Swedish language dictionary support.

Turkish.edc Turkish language dictionary support.

Ukrain.edc Ukrainian language dictionary support.

WestEuropean.edc West European (English, French, German,

Portuguese, Spanish, Italian) languages set

dictionary support.

TestShell\Dictionaries\Full This folder contains larger and more

comprehensive dictionaries for the same

languages. You can substitute any of them

for the files of the same name in the

TestShell\Dictionaries folder, if the size

issue is unimportant for you.

TestShell\Patterns ChineseJapanese.rom Recognition database for Chinese, Japanese

and Korean languages.

KoreanHanja.rom Recognition database for Korean (Hanja)

language.

KoreanSpecificBCR.rom Recognition database for recognizing

business cards in Korean language.

KoreanSpecific.rom Recognition database for Korean language.

European.rom Recognition database for all supported

recognition languages except Chinese,

Japanese and Korean.

Micr.rom Recognition database for Magnetic Ink

Character Recognition (MICR) mode.

PatternsFilesInfo.txt This file contains the information about

which patterns file can be used for

recognizing which languages.

See also

List of the Recognition Languages in ABBYY Mobile OCR Engine

What's New in ABBYY Mobile OCR Engine 4 release 15
Here you can find the list of new features in ABBYY Mobile OCR Engine 4 release 15.

• Bugs fixed.

ABBYY Mobile OCR Engine 4: Contact ABBYY

 84

Contact ABBYY

In this section you can find the contacts of ABBYY sales offices and technical support:
• How to Buy

• Technical Support

How to Buy ABBYY Mobile OCR Engine 4
You can order ABBYY Mobile OCR Engine 4 by contacting our offices at the following addresses:

• ABBYY Russia: engine@abbyy.com

• ABBYY USA: sales@abbyyusa.com

• ABBYY Europe: engine_eu@abbyy.com

• ABBYY Ukraine: engine@abbyy.ua

Technical Support
If you have any questions regarding the use of ABBYY Mobile OCR Engine 4, first of all consult this Developer's Help.

Useful information can also be found in our Knowledge Base.

If you cannot find the answer to your question, please contact the ABBYY office serving your region by e-mail. Please

provide the following information when contacting technical support:
• your first and last name

• the name of your organization

• your phone number (or fax, or e-mail)

• the build number (to determine the build number, see the BuildInfo.txt file in the Help folder of the

distribution package)

• a description of the problem

• a project that demonstrates the problem (with the necessary data files). We recommend that you

compress the f iles using any popular archiving program (WinZIP, WinRAR, etc.)

• the name of your development tool

• the type of your computer and processor

• the type of operating system

You can also provide any additional information you consider important.

Support contacts

North/Central

Americas

Customers from USA, Canada, Japan, Mexico or other Central American

countries, please contact ABBYY USA at dev_support@abbyyusa.com

Western Europe Customers from Austria, Benelux, Denmark, France, Germany, Greece, Italy,

Ireland, Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom or

other Western European countries, please contact ABBYY Europe GmbH at

TechSupport_eu@abbyy.com

ABBYY Mobile OCR Engine 4: Contact ABBYY

 85

Eastern Europe and

the Mediterranean

Customers from Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech

Republic, Hungary, Israel, Macedonia, Moldova, Montenegro, Poland, Romania,

Serbia, Slovakia, Slovenia, Turkey or Ukraine, please contact ABBYY Ukraine at

engine_support@abbyy.ua

All other regions Customers from the countries not mentioned above, please contact ABBYY

Russia at SDK_Support@abbyy.com

	G:\MobileOCR\Help\Tools.Windows\MobileOCREngine4UserGuide_title.pdf
	G:\resultWindows.pdf

